Regelkreise [Kybernetik]

Consider the original of all things,
the matter they are made of,
the alterations they must run through,
and the result of the change.
And that all this does no manner of harm.
Marcus Aurelius

Möglicherweise hoffen wissenschaftliche Zivilisationen (H. Schelsky), dass sie mit jedem Fortschritt die Komplexität ihrer planetarischen Verhältnisse (conditio humana) reduzieren können. Studiert man die Fabrikation von Erkenntnis, dann sieht man sehr schnell, dass mit jeder neuen Erkenntnis weitere Fragen aufgeworfen werden und die Verhältnisse in Folge noch komplexer sind, als sie vorher erschienen. Die Frage nach der Hoffnung ist aber auch eher von theoretischem oder subjektivem Interesse. Wichtiger erscheint die gesellschaftliche Erwartung an die Wissenschaft, die rationale Mittel und Verfahren zu liefern hat, mit denen sich kollektive Interessen oder Lebensverhältnisse (allg.) vorgeblich steuern und regeln lassen. Schaut man heute auf die Wissenschaft, als industriellem Komplex, dann geht es auch um handfeste Interessen, um Kontrolle, Einfluß und Macht.

Seit den 50er Jahren des 20. Jahrhunderts beschreibt die Kybernetik lebendige Prozesse des Wahrnehmens und Handelns (perception and action) als technische Steuerungs- und Regelungsprozesse und behandelte den ›Prozess des Erkennens einer Realität‹ fortan als einen ›Prozess des Errechnens einer Realität‹ (Heinz von Foerster). Der Funktionszusammenhang von Mensch und (elektronischer) Maschine wurde in der Zusammenarbeit der beteiligten Fachwissenschaften neu bestimmt. Die ehemals erhabene Stellung der „objektiv“ beobachtenden und analysierenden Wissenschaften wich einem neuen Typus von „Beobachter“, der nicht nur ein Experiment plant, sondern auch versteht, dass jeder menschliche und nicht-menschliche Beobachter in jedem Experiment selbst enthalten ist. Wissenschaft wurde zum großen, entgrenzten Mechanismus, zu “Big Science“ (Alvin Weinberg, 1967), der sich selbst untersucht. Die Rolle des erkennenden Individuums wurde auf diesem Wege mit der erkennenden Maschine gleichgesetzt. Die Kybernetik hat mit ihren forschenden Menschmaschinen (N. Wiener) einen Paradigmenwechsel ausgelöst, in dessen Folge techno-humanoide Modellwelten entstanden, die man als die höchste Form der Nachahmung verstehen könnte (G. Tarde). Es hat also Gründe, warum man die Gesellschaft heute als Labor beschreibt.

Die Wissenschaft verfolgte heute zwei Rationalitätstypen, einen rationalen Typus des Denkens und Kalkülisierens und einen eher phänomenologischen Typus des Sehens und der Erlebens- oder Denkformen (Leisegang). Wenn wir heute Automaten und ›künstliche Intelligenzen‹ erleben (und kaufen), dann urteilen wir nicht mehr über eine uns fremde und beigestellte Großtechnik (M. Heidegger), vielmehr schauen wir uns unweigerlich dabei zu, höchstselbst technisch zu sein. So geht die Menschheit zwei Wege, der eine führt zu einem besseren Verstehen der Welt (allg.) und höherer Komplexität, der andere liefert uns auf parallelem Wege eine simpel zu bedienende und damit triviale Modellwelt vernetzter, selbstlernender Automaten. Mögen wir darin — im Hegelschen Sinne — das dialektische Verhältnis der Selbstbewegung des Denkens und der Selbstbewegung der Wirklichkeit erkennen.

André-Marie Ampère, 1843 (nach Vorlage des schlecht lesbaren Originals neu gesetzt)
André-Marie Ampère, 1843 (nach Vorlage des schlecht lesbaren Originals neu gesetzt)

Die technische Zivilisation muß bei aller Theorie die Vorstellung wach halten, daß uns diese evolutiven Modellwelten eines Tages rätselhafter erscheinen werden als jene planetarischen Verhältnisse, um deren Verstehen, Steuerung und Regelung es ursprünglich ging. Die von Ampère im Jahre 1843 vorgestellte politische Dimension der Kybernetik (Ampère, André-Marie (1843). Essai sur la Philosophie des Sciences. Paris: Bachelier, Libraire-Éditeur. S.142.) verstehe ich daher als den eigentlichen Denkzusammenhang — zwischen ihrer analytischen Komplexität und ihrer demonstrativen Trivialität, die heute in den quasi-lithurgischen Konsumgütern ihren sichtbaren und erlebbaren Ausdruck findet.

Das Archiv kybernetischer Modelle

The purpose of a system is what it does.
Stafford Beer

Ich sichte ausgewählte und verfügbare Literatur und beschäftige mich mit der Frage, wie dieses Denken in Regelkreisen und Rückkoppelungen auf unser soziales und politisches Denken Einfluß genommen haben mag. Bis heute habe ich über 4000 Bücher und Forschungsberichte (Scientific Papers) zusammengetragen und durchgesehen. Der Untersuchungsraum ist offen, es finden sich Modelle unterschiedlichster wissenschaftlicher Herkunft. Mein Hauptinteresse gilt der Sozialwissenschaft und ihren Disziplinen (Psychologie, Ökonomie, Erziehungswissenschaften, Soziologie, Rechtswissenschaften, Politische Wissenschaften, Sozialgeografie u. a.). Die Provenience des Materials ordne ich gemäß der akademischen Ausbildung der Autor:innen. Dabei beziehe ich mich auf das provisorische Klassifikationsschema ›Field of Sciences‹ der OECD / United Nations.

In dem hier hauptsächlich untersuchten Zeitraum zwischen 1950 bis 1980 kam ein Großteil der Autor:innen ohne Modelldarstellungen aus, oder sie bedienten sich statistischer und / oder mathematischer Verfahren. Das bedeutet auch, dass zu den meisten Ideen keinerlei anschauliche Modelle vorgelegt wurden. Meiner Annahme nach machen diese Anschauungen aber den entscheidenden Unterschied, da sie — anders als der erklärende Text, — ihre Gegenstände (im Sinne von Original) in einer irreführenden Schlichtheit repräsentieren und damit trivialisieren.

„Ich sehe, also denke ich“ — G. W. Leibniz
„Alle Modelle sind falsch“ — George E. P. Box

 

1920, Jakob Johann von Uexküll    


Die Bedeutung der Funktionsregeln für den Funktionskreis
63 | FOS: 1.6 Biological sciences
In: Uexküll, Jakob Johann von (1920). Theoretische Biologie. Berlin: Verlag von Gebrüder Paetel. S.117.

063 (1920) Jakob von Uexküll

Figur 4.



Es ist zu beachten, daß prinzipiell ein jeder Kreis, z.B. der Feindeskreis immer geschlossen ist, mag nun das Merkmal, das die Anwesenheit des Feindes kundgibt, noch so einfach sein und in einem bloßen Geruch oder in einer einfachen Bewegung bestehen – immer wird darauf die Handlung vollständig einsetzen, die zur Abwehr des Feindes dient, mag diese in einer Flucht oder einer Verteidigung bestehen. […] Wie das Schema zeigt, zerfällt die Innenwelt in zwei Teile, in einen der Merkwelt zugekehrten, der die Wirkungen austeilt. Zwischen Merkorgan und Handlungsorgan befindet sich die Wasserscheide des ganzen Funktionskreises. Sowohl das Merkorgan wie das Handlungsorgan wird von je einer Regel beherrscht, die eine ordnet im Merkorgan die Eindrücke und schafft dadurch die Merkmale, die andere ordnet die Wirkungen des Handlungsorgans und schafft dadurch die Handlungen. Beide Regeln sind genau auf den anderen Merkmalsträger eingestellt, bei dessen Erscheinen die Merkmale auftreten und der daraufhin „behandelt“ wird. Der ganze Ring bildet ein einheitliches Ganze, weil jeder Teil von dem anderen abhängig ist wie von einem Organismus. Nur wenn man das Ganze im Auge behält, wird die Planmäßigkeit jedes Teils bis in die letzte Einzelheit verständlich.

1928, Hans Leisegang    


Der Kreislauf der Dinge
91 | FOS: 6.3 Philosophy ethics and religion
In: Leisegang, Hans (1928). Denkformen. Berlin, Leipzig: Walter de Gruyter & Co. S.85.

091 (1928) Hans Leisegang

Fig. 2.



Eh‘ sich’s nicht rundet zu einem Kreis, ist kein Wissen vorhanden.
Ehe nicht einer alles weiß, ist nicht die Welt verstanden.
J. W. v. Goethe
 

Innerhalb der europäischen Philosophiegeschichte sind die ersten brauchbaren Zeugnisse dafür, daß die Denkform mit der Weltanschauung in einem festen organischen Zusammenhang steht, die Fragmente des Herakleitos, des „dunklen“ Philosophen der Antike, von dessen Werk der durch Nietzsche als Erzrationalist gekennzeichnete Sokrates gesagt haben soll: „Was ich davon verstanden habe, ist trefflich; ich glaube auch das, was ich nicht verstanden habe; man müßte nur einen Delischen Taucher dazu haben.“

[…]

Der Denkform Heraklits, in der Gegensätze in einem Gedankenkreis aufgehoben werden, entspricht sein Weltbild, Von allen Gegensätzen hat keiner ihn so tief ergriffen und im Innersten bewegt wie der von Leben und Tod, Geborenwerden und Sterben. Wie andere vor ihm, so schreibt auch er über die Natur, περι φυσεω. Was bedeutete aber den Vorsokratikern das Wort Physis! Herzuleiten von φυω, wachsen (…), schließt dieser Begriff für sie zunächst die Vorstellung des Entstehens und Vergehens der Organismen in sich, und der ganze Kosmos ist für sie ein φυτσν oder ein ζωον). Auch der Organismus zeigt in seinem Lebensprozeß den Kreislauf, der mit dem Samen beginnt, dem Einen, aus dem das Ganze herauswächst, das sich wieder in Einem, dem Samen, als dem Ziel seiner Entwicklung zusammenfaßt. Der Organismus stirbt, aber in dem von ihm erzeugten Samen hat er den Anfang neuen Lebens zurückgelassen.

[…]

Bauen wir Heraklits „System“ von innen her auf, so stellt es sich dar als zusammengefügt aus konzentrischen Kreisläufen, von denen jeder diametral gegenüberliegende Gegensätze verbindet:
1. Der einzelne Satz der menschlichen Rede geht von einem Anfang zu einem diesem entgegengesetzten Ende, um von ihm zum Anfangsbegriff zurückzukehren.
2. Die menschliche Seele wandert vom Leben zum Tode und vom Tode wieder zum Leben.
3. Die ganze Welt entfaltet sich aus einem Element, dem Feuer, zu allen Elementen, um aus allen wieder zu einem zu werden.

 

1933, Ragnar Frisch    


Economy as a closed system
 | FOS: 5.2 Economics and business
In: Frisch, Ragnar (1933). Propagation Problems and Impulse. Problems in Dynamic Economics. Oslo: Universittetets 0konomiske Institutt. S.4.

055 (1933) Ragnar Frisch

FIG. I



In order to indicate the most important variables entering into the macro-dynamic system we may use a graphical illustration as the one exhibited in Fig. I. The system expressed in Fig. I is a completely closed system. All economic activity is here represented as a circulation in and out of certain sections of the system. Some of these sections may best be visualized as receptacles (those are the ones indicated in the figure by circles), others may be visualized as machines that receive inputs and deliver outputs (those are the ones indicated in the figure by squares). There are three receptacles, namely, the forces of nature, the stock of capital goods, and the stock of consumer goods. And there are three machines: the human machine, the machine producing capital goods, and the machine producing consumer goods. The notation is chosen such that capital letters indicate stocks and small letters flows. For instance, R means that part of land (or other 1 forces of nature) which is engaged in the production of consumer goods, r is the services rendered by R per unit time. Similarly V is the stock of capital goods engaged in the production of consumer goods and v the services rendered by this stock per unit time. Further, a is labour (manual or mental) entering into the production of consumer goods, so that the total input in the production of consumer goods is r + v + a. 

The complete macro-dynamic problem, as I conceive of it, consists in describing as realistically as possible the kind of relations that exist between the various magnitudes in the Tableau Économique exhibited in Fig. I, and from the nature of these relations to explain the movements, cyclical or otherwise, of the system. This analysis, in order to be complete, must show exactly what sort of fluctuations are to be expected, how the length of the cycles will be determined from the nature of the dynamic connection between the variables in the Tableau Économique, how the damping exponents, if any, may be derived, etc. In the present paper I shall not make any attempt to solve this problem completely. I shall confine myself to systems that are still more simplified than the one exhibited in Fig. I. I shall commence by a system that represents, so to speak, the extreme limit of simplification, but which is, however, completely determinate in the sense that it contains the same number of variables as conditions. I shall then introduce little by little more complications into the picture, remembering, however, all the time to keep the system determinate. This procedure has one interesting feature: it enables us to draw some conclusions about those properties of the system that may account for the cyclical character of the variations. Indeed, the most simplified cases are characterized by monotonic evolution without oscillations, and it is only by adding certain complications to the picture that we get systems where the theoretical movement will contain oscillations. It is interesting to note at what stage in this hierarchic order of theoretical set-ups the oscillatory movements come in.

1934, Jacob Levy Moreno    


Balance and imbalance within social atom
 | FOS: 5.3 Sociology
In: Moreno, Jacob Levy (1934). Who shall survive. A New Approach to the Problem of Human Interrelations. Washington, D.C.: Nervous and Mental Disease Publishing Co. S.153.

101 (1934) Jacob Levy Moreno

Spontaneity Test



The classification of the social atom illustrates in a dramatic fashion that we live in an ambiguous world, half real and half fiction; that we do not live with persons with whom frequently we would like to live; that we work with persons who are not chosen by us; and that we make love to persons whom we do not love; that we isolate and reject persons whom we need most, and that we throw our lives away for people and principles which are not worthy. The atom concept gives us an opportunity to bring the immense complexity of forms within the social universe under one common denominator. It is as if a great theater director has evolved a succession of most colorful and most attractive settings and scenes, masks of heroes, and words of eternity to distract our mind from the facts beneath. That these heroic masks are actually a bunch of ordinary people who have all kinds of human relations to each other and that the settings and scenes sprang from the fantasy of a pair of lovers. Similarly, on the stage of the social universe, millions of kinds and varieties of collectives, families, schools, factories, churches, nations, are spread before our eye in most attractive patterns and we are ourselves actors on this stage, and as if by blind necessity, we ceaselessly and indeterminately continue to bring forth ever new collectives to reign as others are faded. Perhaps because we are enmeshed ourselves in this network, it has been so hard to break the door to the actual world beneath, to recognize the human universe in all its forms as a summation, interpenetration and dynamic multiplication of social atoms.

1935, Jan Tinbergen    


Wirtschaftskreislauf
 | FOS: 5.2 Economics and business
In: Tinbergen, Jan (1935). Quantitative Fragen der Konjunkturpolitik. In: Weltwirtschaftliches Archiv, 42 (1935). Bd. S.373.

087 (1935) Jan Tinbergen

Schaubild 1. — Schema eines volkswirtschaftlichen Kreislaufs



Setzen wir nun erstens den Fall, daß alle Daten konstant bleiben. Wenn dann zu Beginn des von uns betrachteten Zeitraums Gleichgewicht im statischen Sinne vorhanden ist, so wird die Wirtschaft in diesem Zustande verharren. Das ist eben die Bedeutung des Begriffes Gleichgewicht. Falls wir aber nicht von einer Gleichgewichtslage ausgehen, werden trotz der Unverändertheit der Daten Bewegungen stattfinden. Solche bei Konstanz der Daten auftretenden Bewegungen nennen wir endogene Bewegungen. Mit einem Terminus aus der Physik könnte man auch von ›Eigenschwingungen‹ sprechen. Sie sind durch die Struktur des Systems bestimmt, d. h. durch den Wert der darin auftretenden Konstanten. Soweit diese Konstanten und die Anfangslage des Systems uns bekannt sind, können wir diese Bewegungen voraussagen oder extrapolieren. Voraussetzung dafür ist aber eben, daß man von der Konstanz der als Konstanten angenommenen Größen überzeugt sein darf.

Anders verhält es sich, wenn auch die Daten sich ändern. Das kann einmal in regelmäßiger Weise geschehen — wie z. B. die Saisonänderungen oder gar die Sonnenfleckenänderungen. Dann können wir sie in unser System mit aufnehmen — als Variabeln im engern Sinne betrachten. Allerdings treiben wir dann nicht mehr nur Ökonomie, sondern beziehen weitere Wissenschaftsbereiche ein. Entscheidend sind aber die — soweit wir wissen — unregelmäßigen Datenänderungen, die als unregelmäßige ›Impulse‹ — um wieder einen physikalischen Ausdruck zu benutzen — auf das System einwirken. Beispiele sind die Ernteausfälle, die ›spontanen‹ neuen Erfindungen, viele politische Maßnahmen, oft auch größere Streiks und schließlich Kriege. Vielleicht wird es einmal möglich sein, derartige Ereignisse teilweise in das System einzubeziehen; jetzt ist, für die Praxis der Konjunkturforschung, deren Auftreten noch als unregelmäßig zu betrachten. Diese unregelmäßigen Datenänderungen greifen jeweils in die Eigenschwingung des Systems ein, das eine Mal wird
z. B. das Produktionsvolumen schneller zunehmen, das andere Mal langsamer, wieder ein anderes Mal wird es schneller abnehmen, als es im ungestörten Ablauf der Fall gewesen sein würde. Das sind die unvorhersagbaren Bewegungen, die den Konjunkturforscher seiner Prophetenrolle entkleiden. Ein gewisser Trost ist es nur, daß man im voraus nicht sagen kann, ob diese ›Störungen‹ in der einen oder andern Richtung auftreten werden, und daß daher gewissermaßen die Extrapolation der Eigenschwingung die ›mittlere Bewegung‹ des gestörten Systems ergibt. In diesem Sinne ist auch der Satz wichtig, daß die von zufälligen Störungen verursachten Bewegungen gewisser einfacher Systeme eine Quasiperiodizität aufweisen mit einer mittleren Periode, die der des ungestörten Systems gleich ist.

Die Erforschung der Eigenbewegung hat also doch eine Berechtigung. Die Konjunkturforschung zerfällt damit in zwei Teile: die schnelle Informierung über Art und Größe der unregelmäßigen Störungen und das Studium der Eigenbewegungen. Dasselbe gilt für die Probleme der Konjunkturpolitik. Für die Bewegung des Systems bedeutet es keinen Unterschied, ob die Störung durch eine Naturkraft, durch menschliche Kraft ohne konjunkturpolitisches Ziel oder im Sinne eines bewußten Eingriffs durch menschliche Kraft mit einem solchen Ziel verursacht ist. Die Konjunkturpolitik ist der genannten Einteilung zufolge zu unterscheiden in Konjunkturpolitik, die die Eigenbewegung zu ändern bestrebt ist, und Konjunkturpolitik, die etwa die Stöße durch kompensierende Maßnahmen unschädlich machen will. Die Beziehungen zwischen den beiden Formen seien hier außer acht gelassen. Festgestellt sei hier nur, daß die Kenntnis der Eigenbewegungen für die Konjunkturpolitik sehr wichtig ist.

1940, Viktor von Weizsäcker    


Die Genese der Form
 | FOS: 3.5 Other medical sciences
In: Weizsäcker, Viktor von (1940 / 1947). Der Gestaltkreis. Theorie der Einheit von Wahrnehmen und Bewegen. Stuttgart: Georg Thieme Verlag. S.136.

079 (1940) Viktor von Weizsäcker

- -



Und doch bleibt bestehen: die Bewegungsform entstand. Aber wir konnten dieses Entstehen nicht in befriedigender Weise nachzeichnen. Ging man vom individuellen Organismus aus, dann hatte man die vorgegebene Umwelt außer acht gelassen und musste sie nachträglich einführen; ging man von der Umwelt, den Reflexreizen, aus, dann mußte man die zentrale Tätigkeit nachträglich einführen. Im ersten Falle erhält man die Fiktion, als komme die Umwelt nur durch ihre Reaktion auf die Bewegung des Lebewesens in Betracht, im zweiten die Fiktion, als sei der Organismus der reflektorische Spielball der Umweltreize. Ist man einmal auf diese falsche Alternative und ihren Mißerfolg aufmerksam geworden, dann liegt die Vermutung schon nahe, der Fehler stecke in dieser ursprungsmäßigen Trennung von Organismus (O) und Umwelt (U). Beide sind ja von Anfang an da. O wirkt auf U und gleichzeitig U auf O. Es gibt keine zwingende Vorschrift, wonach zuerst das eine und dann das andere Wirkungsverhältnis erfolge; die Gleichzeitigkeit der Wechselwirkung kann kein Grund sein, sie überhaupt als keine Wirkung oder als zeitlos anzusehen. Offenbar fehlen uns im Augenblick nur die Ausdrucksmittel, sie darzustellen. Aber wir können einen Anfang machen, wenn wir die Wechselwirkung von der einseitig gedachten Kausalität unterscheiden. Versucht man zunächst einen anschaulichen Schematismus dafür zu finden, daß O auf U und zugleich U auf O wirke, so kommt man zum Bilde eines Kreises:
[Figur]
Die Formgenese muß dann als geschlossener Kreis insofern gelten, als es in ihrem Wirkungszusammensein kein lokalisierbares prius und posterius gibt; denn dies würde der Voraussetzung der Gleichzeitigkeit widersprechen. Wir werden die Genese der Bewegungsformen von Organismen als Gestaltskreis bezeichnen.

1940, Jan Tinbergen    


The econometric business cycle
 | FOS: 5.2 Economics and business
In: Tinbergen, Jan (1940). Econometric Business Cycle Research. The Review of Economic Studies, 7(2). S.74.

085 (1940) Jan Tinbergen

Chart I



Turning, first, to the mathematico-economic part of the work, I think this may be characterised as the construction of a scheme for the utilisation of business cycle theories. It consists in indicating the logical structure of the business cycle mechanism. A graphic representation, given in Chart I, may serve as a starting point. This scheme shows, in each (vertical) column the list of phenomena (vari-ables) included: A, B, C … In each (horizontal) row the course of time is represented; i.e. the consecutive dots represent one phenomenon at consecutive unit time intervals. Denoting these by a suffix, the dots represent, e.g. A1, A2, A3, A4, etc. The extent of each of them, if A is a measurable phenomenon, could be plotted in a third dimension, e.g. perpendicular to the plane. We shall not, however, go into that now. Any definite theory tells us how a given change at moment t in A acts on other phenomena at other moments. Suppose the theory is that it acts on B without lag and on C with a lag of one time unit, i.e. A (t) acts on C(t+I). This is indicated by the arrows from A(t) to B(t) and from A(t) to C(t+I). If, e.g. changes in C are assumed to work on D and A, both with a lag of two time units, this will again be indicated by arrows. A change in A(t) may be said to be a „first“ or „direct„ „cause“ to a change in C(t+I), and a „second“ or „indirect“ cause to a change in D(t+3). All the arrows repeat themselves as long as the model’s structure is supposed to remain the same. The more details are considered, the greater the number of arrows. The totality of arrows may be „listed“ in two ways, viz. (i) according to the variable from which they start, or (ii) according to the variable at which they end. In the first listing all „effects“ of changes in one variable on others are grouped together; in the second all „causes“ of changes in one variable are put into one group. Both lists describe, however, the same mechanism. The latter corresponds to what will, in this paper, be called the system of elementary equations. Each equation indicates how changes in one variable depend on the „causing“ changes in other variables.

1943, Warren McCulloch   Walter Pitts


The computing brain
 | FOS: 5.1 Psychology
In: McCulloch, Warren S. & Pitts, Walter (1943). A logical calculus of the ideas immanent in nervous activity. In: Bulletin of Mathematical Biophysics. Vol. 5. S.130.

094 (1943) Warren McCulloch, Walter Pitts

Figure I (Part i)



THEOREM VII.

Alterable synapses can be replaced by circles. This is accomplished by the method of Figure Ii. It is also to be remarked that a neuron which becomes and remains spontaneously active can likewise be replaced by a circle, which is set into activity by a peripheral afferent when the activity commences, and inhibited by one when it ceases.

[…]

It is easily shown: first, that every net, if furnished with a tape, scanners connected to afferents, and suitable efferents to perform the necessary motor-operations, Call compute only such numbers as can a Turing machine; second, that each of the latter numbers can be computed by such a net; and that nets with circles can be computed by such a net; and that nets with circles can compute, without scanners and a tape, some of the numbers the machine can, but no others, and not all of them. This is of interest as affording a psychological justification of the Turing definition of computability and its equivalents, Church’s λ — definability and Kleene’s primitive recursiveness: If any number can be computed by an organism, it is computable by these definitions, and conversely.

IV. Consequences

Causality, which requires description of states and a law of necessary connection relating them, has appeared in several forms in several sciences, but never, except in statistics, has it been as irreciprocal as in this theory. Specification for any one time of afferent stimulation and of the activity of all constituent neurons, each an „all-or-none“ affair, determines the state. Specification of the nervous net provides the law of necessary connection whereby one can compute from the description of any state that of the succeeding state, but the inclusion of disjunctive relations prevents complete determination of the one before. Moreover, the regenerative activity of constituent circles renders reference indefinite as to time past. Thus our knowledge of the world, including ourselves, is incomplete as to space and indefinite as to time. This ignorance, implicit in all our brains, is the counterpart of the abstraction which renders our knowledge useful. The role of brains in determining the epistemic relations of our theories to our observations and of these to the facts is all too clear, for it is apparent that every idea and every sensation is realized by activity within that net, and by no such activity are the actual afferents fully determined.

There is no theory we may hold and no observation we can make that will retain so much as its old defective reference to the facts if the net be altered. Tinitus, paraesthesias, hallucinations, delusions, confusions and disorientations intervene. Thus empiry confirms that if our nets are undefined, our facts are undefined, and to the „real“ we can attribute not so much as one quality or „form.“ With determination of the net, the unknowable object of knowledge, the „thing in itself,“ ceases to be unknowable.

To psychology, however defined, specification of the net would contribute all that could be achieved in that field — even if the analysis were pushed to ultimate psychic units or „psychons,“ for a psychon can be no less than the activity of a single neuron. Since that activity is inherently propositional, all psychic events have an intentional, or „semiotic,“ character. The „all-or-none“ law of these activities, and the conformity of their relations to those of the logic of propositions, insure that the relations of psychons are those of the two-valued logic of propositions. Thus in psychology, introspective, behavioristic or physiological, the fundamental relations are those of two-valued logic.

1948, Claude Elwood Shannon    


A Mathematical Theory of Communication
 | FOS: 1.1 Mathematics
In: Shannon, Claude E. (1948). A Mathematical Theory of Communication. In: The Bell System Technical Journal, 27. S.384.

076 (1948) Claude Elwood Shannon

Fig. 2 — Graphical representation of the constraints on telegraph symbols.



1. The discrete noiseless channel

Teletype and telegraphy are two simple examples of a discrete channel for transmitting information. Generally, a discrete channel will mean a system whereby a sequence of choices from a finite set of elementary symbols S1, … Sn can be transmitted from one point to another. Each of the symbols S, is assumed to have a certain duration in time Ti seconds (not necessarily the same for different Si, for example the dots and dashes in telegraphy). It is not required that all possible sequences of the S, be capable of transmission on the system; certain sequences only may be allowed. These will be possible signals for the channel. Thus in telegraphy suppose the symbols are: (1) A dot, consisting of line closure for a unit of time and then line open for a unit of time; (2) A dash, consisting of three time units of closure and one unit open; (3) A letter space consisting of, say, three units of line open; (4) A word space of six units of line open. We might place the restriction on allowable sequences that no spaces follow each other (for if two letter spaces are adjacent, it is identical with a word space). The question we now consider is how one can measure the capacity of such a channel to transmit information.

[…]

A very general type of restriction which may be placed on allowed sequences is the following: We imagine a number of possible states a1, a2, … an. For each state only certain symbols from the set S1, … Sn can be transmitted (different subsets for the different states). When one of these has been transmitted the state changes to a new state depending both on the old state and the particular symbol transmitted. The telegraph case is a simple example of this. There are two states depending on whether or not a space was the last symbol transmitted. If so then only a dot or a dash can be sent next and the state always changes. If not, any symbol can be transmitted and the state changes if a space is sent, otherwise it remains the same. The conditions can be indicated in a linear graph as shown in Fig. 2. The junction points correspond to the states and the lines indicate the symbols possible in a state and the resulting state.

1950, Claude Elwood Shannon    


Estimating the entropy and redundancy of a language
 | FOS: 1.1 Mathematics
In: Shannon, Claude Elwood (1950 / 1951). Prediction and Entropy of printed English. In: The Bell System Technical Journal. 1/1951. S.55.

074 (1950) Claude Elwood Shannon

Fig. 2 — Communication system using reduced text.



Prediction of English
The new method of estimating entropy exploits the fact that anyone speaking a language possesses, implicitly, an enormous knowledge of the statistics of the language. Familiarity with the words, idioms, clichés and grammar enables him to fill in missing or incorrect letters in proof-reading, Or to complete an unfinished phrase in conversation. An experimental demonstration of the extent to which English is predictable can be given as follows:

Select a short passage unfamiliar to the person who is to do the predicting. He is then asked to guess the first letter in the passage. If the guess is correct he is so informed, and proceeds to guess the second letter. If not, he is told the correct first letter and proceeds to his next guess. This is continued through the text. As the experiment progresses, the subject writes down the correct text up to the current point for use in predicting future letters. The result of a typical experiment of this type is given below. Spaces were included as an additional letter, making a 27 letter alphabet. The first line is the original text; the second line contains a dash for each letter correctly guessed. In the case of incorrect guesses the correct letter is copied in the second line.

(1) THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG
(2) ––––ROO––––––NOT–V–––––I–––––––SM––––OBL–––                 (8)
(1) READING LAMP ON THE DESK SHED GLOW ON
(2) REA––––––––––O––––––D––––SHED–GLO––O–
(1) POLISHED WOOD BUT LESS ON THE SHABBY RED CARPET
(2) P–L–S–––––O–––BU––L–S––O––––––SH–––––RE––C–––––

Of a total of 129 letters, 89 or 69% were guessed correctly. The errors, as would be expected, occur most frequently at the beginning of words and syllables where the line of thought has more possibility of branching out. It might be thought that the second line in (8), which we will call the reduced text, contains much less information than the first. Actually, both lines contain the same information in the sense that it is possible, at least in principle, to recover the first line from the second. To accomplish this we need an identical twin of the individual who produced the sequence. The twin (who must be mathematically, not just biologically identical) will respond in the same way when faced with the same problem. Suppose, now, we have only the reduced text of (8). We ask the twin to guess the passage. At each point we will know whether his guess is correct, since he is guessing the same as the first twin and the presence of a dash in the reduced text corresponds to a correct guess. The letters he guesses wrong are also available, so that at each stage he can be supplied with precisely the same information the first twin had available.

[Fig 2]

The need for an identical twin in this conceptual experiment can be eliminated as follows. In general, good prediction does not require knowledge of more than N preceding letters of text, with N fairly small. There are only a finite number of possible sequences of N letters. We could ask the subject to guess the next letter for each of these possible N-grams. The complete list of these predictions could then be used both for obtaining the reduced text from the original and for the inverse reconstruction process.

To put this another way, the reduced text can be considered to be an encoded form of the original, the result of passing the original text through a reversible transducer. In fact, a communication system could be constructed in which only the reduced text is transmitted from one point to the other. This could be set up as shown in Fig. 2, with two identical prediction devices.

1952, William Ross Ashby    


Behavioral training
 | FOS: 3.2 Clinical medicine
In: Ashby, William Ross (1952 / 1960). Design for a brain. The origin of adaptive behavior. New York: John Wiley & Sons. S.112.

021 (1962) William Ross Ashby



8/8. The process of ‚training‘ will now be shown in its relation to ultrastability. All training involves some use of ‚punishment‘ or ‚reward‘, and we must translate these concepts into our form. ‚Punishment‘ is simple, for it means that some sensory organs or nerve endings have been stimulated with an intensity high enough to cause step-function changes in the nervous system. The concept of ‚reward‘ is more complex. It usually involves the supplying of some substance (e.g. food) or condition (e.g. escape) whose absence would act as ‚punishment‘. The chief difficulty is that the evidence suggests that the nervous system, especially the mammalian, contains intricate and specialised mechanisms which give the animals properties not to be deduced from basic principles alone. Thus it has been shown that dogs with an oesophageal fistula, deprived of water for some hours, would, when offered water, drink approximately the quantity that would correct the deprivation, and would then stop drinking; they would stop although no water had entered stomach or system. The properties of these mechanisms have not yet been fully elucidated; so training by reward uses mechanisms of unknown properties. Here we shall ignore these complications. We shall assume that the training is by pain, i.e. by some change which threatens to drive the essential variables outside their normal limits; and we shall assume that training by reward is not essentially dissimilar.

In other training experiments, the regularity of action 2 (supplied above by the constant physical properties of glass) may be supplied by an assistant who constantly obeys the rules laid down by the experimenter. Grindley, for instance, kept a guinea-pig in a silent room in which a buzzer was sounded from time to time. If and only if its head turned to the right did a tray swing out and present it with a piece of carrot; after a few nibbles the carrot was withdrawn and the process repeated. Feedback is demonstrably present in this system, for the diagram of immediate effects is:

[Diagram]

The buzzer, omitted for clarity, comes in as parameter and serve merely to call this dynamic system into functional existence; for only when the buzzer sounds does the linkage 2 exist. This type of experiment reveals its essential dynamic structure more clearly if contrasted with elementary Pavlovian conditioning. In the experiments of Grindley and Pavlov, both use the sequences ‚ … buzzer, animal’s response, food‘. In Grindley’s experiment, the value of the variable ‚food‘ depended on the animal’s response: if the head turned to the left. ‚food‘ was ’no carrot‘, while if the head turned to the right, ‚food‘ was ‚carrot‘ given‘. But in Pavlor’s experiments the nature of every stimulus throughout the session was already determined before the session commenced. The Pavlovian experiment, therefore, allows no effect from the variable ‚animal’s behaviour‘ to ‚quantity of food given‘; there is no functional circuit and no feedback. 

It may be thought that the distinction (which corresponds to that made by Hilgard and Marquis between ‚conditioning‘ and ‚instrumental learning‘) is purely verbal. This is not so, for the description given above shows that the distinction may be made objectively by examining the structure of the experiment.

1952, William Ross Ashby    


Polystable system be subjected to an impulsive stimulus
 | FOS: 3.5 Other medical sciences
In: Ashby, William Ross (1952 / 1960). Design for a brain. The origin of adaptive behavior. New York: John Wiley & Sons. S.185.

032 (1962) William Ross Ashby

Figure 14/3/1 : Field of system with twelve confluents, each containing a state of equilibrium (shown as a dot), or a cycle (X at the left). The arrows show the displacements caused by S when it is applied to the representative point at any state of equilibrium or on X.



14/3. Consider now what will happen if a polystable system be subjected to an impulsive (S. 6/5) stimulus S repetitively, the stimulus being unvarying, and with intervals between its applications sufficiently long for the system to come to equilibrium before the next application is made. By S. 6/5, the stimulus S, being impulsive, will displace the representative point from any given state to some definite state. Thus the effect of S (acting on the representative point at a state of equilibrium by the previous paragraph) is to transfer it to some definite state in the field and there to release it. The possibilities sketched in Figure 14/3/1 will illustrate the process sufficiently. Suppose the system is in equilibrium at A. S is applied; its effect is to move the representative point to the end of the arrow, in this example moving it into another confluent. The system is now, by hypothesis, left alone until it has settled: this means that the basic field operates, carrying it, in this example, to the state of equilibrium B. Here it will remain until the next application of S, which in this example, again moves it to a new confluent; here the basic field takes it to the state of equilibrium C. So does the alternation of S and the basic field take it from equilibrium to equilibrium till it arrives at E. From this state, S moves it only to within the same confluent and the ‚leaving alone‘ results in its coming back to E. S (having by hypothesis a unique effect) now takes it to the arrow head, and again it comes back to E. This state of affairs is now terminal, and the representative point is trapped within the E-confluent.

It can now be seen that the process is selective; the representative point ends in a confluent such that the S-displacement carries it to some point within the confluent. Confluents such as A, C, and D, with the S-displacement going outside, cannot hold the representative point under the process considered; confluents such as E, J, and L can trap it.

1952, William Ross Ashby    


The brain as a machine
 | FOS: 3.5 Other medical sciences
In: Ashby, William Ross (1952 / 1960). Design for a brain. The origin of adaptive behavior. New York: John Wiley & Sons. S.144.

033 (1952) William Ross Ashby

Figure 10/9/1.



10/9. To summarise: — Let it be given that the organism has adapted to P1 by trial and error, then it adapted similarly to P2, and that when P1 was given for the second time the organism was adapted at once, without further trials. From this we may deduce that the step-mechanisms must be divisible into nonoverlapping sets, that the reactions to P1 and P2  must each be due to their particular sets, and that the presentation of the problem (i.e. the value of P) must determine which set is to be brought into functional connexion, the remainder being left in functional isolation.

Thus if the diagram of Figure 7/5/1 is taken as basic, it must be modified so that the step-mechanisms are split into sets, there must be some gating mechanism ? to determine which set shall be on the feedback circuit, and the gating mechanism ? must be controlled (usually through R, as this is the organism’s structure) by the value of P.

[Fig]

Figure 10/9/1 presents the diagram of immediate effects, but the Figure is best thought of as a mere mnemonic for the functional relations, lest it suggest some anatomical form too strongly. The parameter P can be set at various values, P1, P2 … The stepmechanisms are divided into sets, and there is a gating mechanism ?, controlled by P through the environment and the reacting part R, that determines which of the sets shall be effective in the second feedback via the essential variables.

1952, W. Ross Ashby    


Adaption As Stability
 | FOS: 3.5 Other medical sciences
In: Ashby, W. Ross (1952 / 1960). Design for a brain. The origin of adaptive behavior. New York: John Wiley & Sons. S.70.

059 (1952) William Ross Ashby

Figure 5 / 13 / 1.



5/13. The second property is shown when an organism reacts to a variable with which it is not directly in contact. Suppose, for instance, that the diagram of immediate effects (S. 4/12) is that of Figure 5/13/1; the variables have been divided by the dotted line into ‚animal‘ on the right and ‚environment‘ on the left, and the animal is not in direct contact with the variable marked X. The system is assumed to be stable, i.e. to have arrived at the ‚adapted‘ condition (S. 5 /7). If disturbed, its changes will show co-ordination of part with part (S. 5 /12), and this co-ordination will hold over the whole system (S. 4/18). It follows that the behaviour of the ‚animal‘-part will be coordinated with the behaviour of X although the ‚animal‘ has no immediate contact with it. (Example in S. 8/7.) In the higher organisms, and especially in Man, the power to react correctly to something not immediately visible or tangible has been called ‚imagination‘, or ‚abstract thinking‘, or several other names whose precise meaning need not be discussed at the moment. Here we should notice that the co-ordination of the behavior of one part with that of another part not in direct contact with it is simply an elementary property of the stable system.

1952, Alan L. Hodgkin   Andrew F. Huxley


The membrane current and its application to conduction and excitation in nerve
 | FOS: 1.6 Biological sciences
In: Hodgkin, Alan L./ Huxley, Andrew F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. In: The Journal of Physiology, 1952, 117. S.501.

071 (1952) Alan L. Hodgkin: Andrew F. Huxley

Fig. 1. Electrical circuit representing membrane. RNa = 1/gNa ; RK = 1/gK ; Rl = 1/gl . RNa and RK vary with time and membrane potential; the other components are constant.



This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre (Hodgkin, Huxley & Katz, 1952; Hodgkin & Huxley, 1952 a-c). Its general object is to discuss the results of the preceding papers (Part I), to put them into mathematical form (Part II) and to show that they will account for conduction and excitation in quantitative terms (Part III).

Part I. Discussion of experimental results
The results described in the preceding papers suggest that the electrical behaviour of the membrane may be represented by the network shown in Fig. 1. Current can be carried through the membrane either by charging the membrane capacity or by movement of ions through the resistances in parallel with the capacity. The ionic current is divided into components carried by sodium and potassium ions (INa and IK), and a small ‚leakage current‘ (Il) made up by chloride and other ions. Each component of the ionic current is determined by a driving force which may conveniently be measured as an electrical potential difference and a permeability coefficient which has the dimensions of a conductance. Thus the sodium current (INa) is equal to the sodium conductance (gNa) multiplied by the difference between the membrane potential (E) and the equilibrium potential for the sodium ion (ENa). Similar equations apply to IK and Il , and are collected on p. 505.

1953, Irwin Bross    


Role of the Model (Model Theory)
 | FOS: 2.11 Other Engineering and Technologies
In: Bross, Irwin (1953). Design for decision. New York: The Macmillan Company. S.177.

005 (1953) Irwin Bross

FIG 10 02



The disadvantages inherent in the use of models can be avoided to a large extent by a judicious balancing of the two processes, model-making and data collection The relationship between these two aspects of Scientific Method deserves careful consideration, it provides one of the main keys to scientific success, and it also involves several notions which can be carried over into our thinking about everyday problems. 
The evolution of a successful model generally follows the above pattern The first shots are often very wide of the mark, but by gradual stages the scientist zeros in on his target. There is really no end to the sequence. Even after a model has years of successful usage (i. e., Newtonian models in physics), a situation may come along which will not be adequately predicted by the model. A new model must then be developed. Some readers may find this viewpoint rather unpleasant because they would like this sequence to stop somewhere (i. e., at the truth). Nowhere in the scientific world has this stopping place been attained, although now and then the models have survived for man years. The attitude that the truth had been attained was often a barrier to progress.

1953, William Grey Walter    


The brain and the circuit
 | FOS: 3.5 Other medical sciences
In: Walter, W. Grey (1953). The Living Brain. London: Gerald Duckworth & Co. S.196.

041 (1953) William Grey Walter

Figure 21 Circuit of model nerve



In general, it is legitimate to study a model of a mysterious process if three conditions are fulfilled: 1. Several features of the mystery must be known. 2. The model must contain the absolute minimum of working parts to reproduce the known features. 3. The model must reproduce other features, either as predictions, or as unexpected combinations.

There are several legitimate models of nerve. The earliest ones were simple circuits containing resistance and capacitance, and copied only the passive properties of nerve — they did not propagate an impulse or even suggest how an impulse would be propagated. They had the advantage of drawing attention to the similarity of a nerve to a leaky cable such as a submarine telegraph line. Since the mathematical equations relating to leaky cables were worked out during the last century, physiologists could apply rigorous and well-tested notions to those passive features of nerve which the „leaky cable“ models reproduced. Later, electro-chemical models were discovered. The best known of these is, incongruously enough, an iron wire in strong nitric acid. The acid forms an oxide film on the wire so that the iron within does not dissolve. This film is „passive“ but breaks down when scratched or stimulated electrically, for example, when the wire is touched with a piece of zinc. When stimulated, an impulse passes quite quickly down the wire, and this impulse has many of the properties of a nerve impulse: it is a vortex ring of electro-chemical action. During the passage of the impulse the passive film is decomposed momentarily, and the nitric acid attacks the iron with the evolution of nitric oxide. A fresh passive film is formed and this is „refractory“ for a short time; the wire cannot propagate another impulse immediately after one has passed by. This is a good dynamic model but has the disadvantage that the nature of the passive film is almost as mysterious as the nerve fibre itself; it is not very satisfactory to equate two unknowns.

It is possible to retain the simplicity of the leaky cable models and add to them a dynamic element to represent the mechanism in a nerve which provides the miniature electro-chemical explosion seen as an impulse. The circuit of a working model is shown in Figure 21. The capacitors and resistors provide the elements of a leaky cable, and the battery maintains a steady voltage such that the „inside“ of the model is negative to the outside. The addition to the circuit which endows it with the power to propagate an impulse is the neon tube, also connected, in effect, between the inside and outside and biased to a few volts below its striking voltage, which in the case of the miniature tubes used for the embodiment of this circuit, is between 50 and 60 volts. Every element (consisting of resistors R1, R2, R3, R4, the neon tube and the capacitor C) is connected to the adjacent elements on both sides through the capacitors C2, C3, C4 and C5. These capacitors join points of opposite polarity of the neon tubes, so that they may be envisaged as being in the form of a criss-cross connection, a sort of lazy-tongs arrangement extending down the chain of elements.

Providing all the neon tubes are below their striking voltage, the system is stable and inert. If, however, a voltage is applied as indicated by the external battery B1 or B2, the voltage across one of the neon tubes rises, and when it reaches the striking threshold the tube ionises and partially discharges the capacitor C1. When the tube ionises the voltage across it drops to the extinction level. This voltage drop is applied to adjacent tubes through C2, C3 and C4, C5, in such a sense as to increase the voltage across them (owing to the criss-cross connection) and they accordingly strike in their turn. The impulse is thus propagated to both ends of the chain at a velocity depending on the values of the capacitors and resistors.

[…]

Effects such as this are in fact seen in the central nervous system; a change in stimulus frequency has often been found to invert the response, and the anomalous effects of flicker have been described in some detail. It may well be that these otherwise rather puzzling phenomena may be explicable in terms of the peculiar properties of rapidly adapting inhibitory synapses, displayed so clearly in this simple model. The fact that this model is affected by and produces electrical rather than chemical or mechanical changes should be regarded as a convenience and a coincidence. It is not, of course, proof that the electrical changes in nerve are the essence of nervous action. The model is simply the analogue of one set of familiar mathematical expressions relating to passive networks linked by a non-linear operator in the form of a discharge tube. It could quite well be formed of chemical or mechanical parts and does not in theory contain more information than do the algebraic equations. Its advantage is that, being a real object, it has constant dimensions; hence its predictions are more explicit and detailed than those of the equations, in which the constants are rather more arbitrary and independent.

1955, Ned Chapin    


Loop of control
 | FOS: 1.2 Computer and information sciences
In: Chapin, Ned (1955 / 1963). An introduction to automatic computers. Princeton, Totonto, New York, London: D. Van Nostrand Comany, Ing. S.228.

090 (1955) Ned Chapin

Fig. 10-1 Loop of control



The four-stage operation, repeated again and again, serves to maintain control (e.g., of the position of an automobile in a lane). Taking a more general view, consider the four stages of a cycle or loop of control (Fig. 10-1). The first stage is the collection or gathering of information — data acquisition, as it is called. This involves a reduction to symbols and the communication of the symbols. The second or processing stage involves sorting, summarizing, organizing, and transforming the symbols. The third or comparison stage involves contrasting the results of the processing with previously obtained „standards“ or „measures“ to obtain an indication of the extent of the correspondence. The fourth or selection stage involves converting or translating the results of the comparison stage into a choice of an appropriate course of action. It also involves communicating the symbols designating this choice of the action selected to the point where the action is to be taken.

Two major types of control are found: closed-loop, and open-loop. The distinguishing feature of the closed loop of control is that the information gathered in the collection stage is on the same situation that the selected action affects. (…) In the examples above, the information gathered was about the position of the car in the lane, and the action selected regulated the position of the car in the lane. The distinguishing feature of the open loop of control is that the information gathered in the collection stage is not about the same situation that the selected action affects. The control exercised by most (fixed-cycle) traffic lights is an example of an open loop control; a change in the color of traffic lights is not directly affected by the amount, timing, or direction of the traffic.

To put the matter another way, the main feature that distinguishes the closed loop from the open loop is feedback. Consider the classic thermostat example. When the temperature of the house is low, the thermostat turns the furnace on; then the increase in the temperature in the house is sensed by (feeds back to) the thermostat, which, after the temperature reaches a certain point, will act to turn the furnace off. All closed loops of control employ feedback — that is, use information about the thing controlled to control it further. The control loop is associated with the theory of servomechanisms, or „servo“ theory, as it is often called. Many applications of servomechanisms are made in regulating or controlling machines and processes.

1957, Paul Alexander Baran    


Indirect economic relations between advanced and underdeveloped countries
 | FOS: 5.2 Economics and business
In: Baran, Paul (1957 / 1962). The Political Economy of Growth. New York: Penguin Group. S.87.

030 (1957) Paul A. Baran

Developed and underdeveloped countries in the capitalistic system



It is worth at this point giving a rather crude model which summarizes the different economic relationships between developed and underdeveloped countries within the capitalist system which have been alluded to by Baran and in other writing on underdeveloped countries. In the diagram there are four characters in the economic scenario in developed countries (at the top) and in underdeveloped countries (at the bottom). The fourth category in developed countries needs some explanation. It represents the bank accounts into which capital shipped out of underdeveloped countries is placed in the developed countries; these are owned by people in the underdeveloped countries; none the less they represent a capital flow out of those countries since they are intended for use by their owners when they move to the developed countries. There is an analogous category in the diagram for the underdeveloped countries: that is, the subsidiaries of capitalist corporations from the advanced countries. Again although these are owned by corporations in the developed countries they are physically located in the underdeveloped countries.

Now we can see that economic relations do not take place between developed and underdeveloped countries but between certain people and institutions in those countries. Aid is given or lent by one state to another and amortization and interest is paid back similarly; capitalist corporations invest in subsidiaries which repatriate some of their profits; trade takes place between capitalist corporations in developed and underdeveloped countries at world market prices; and some trade takes place between different branches of international companies at internal transfer prices, there is some more trade which can take place, often between states, at negotiated prices. At the same time capitalists, no matter what their nationality, in both developed and underdeveloped countries are employing labour for wages; hence, while there are few direct relations between wage earners in developed and underdeveloped countries, indirect economic relations between them do exist.

1957, David Easton    


A Political System
 | FOS: 5.6 Political Science
In: Easton, David (1957). An Approach to the Analysis of Political Systems. In: World Politics, Vol. 9, No. 3 (April, 1957). S.384.

066 (1957) David Easton

Fig. 1



Once we begin to speak of political life as a system of activity, certain consequences follow for the way in which we can undertake to analyze the working of a system. The very idea of a system suggests that we can separate political life from the rest of social activity, at least for analytical purposes, and examine it as though for the moment it were a selfcontained entity surrounded by, but clearly distinguishable from, the environment or setting in which it operates. In much the same way, astronomers consider the solar system a complex of events isolated for certain purposes from the rest of the universe. Furthermore, if we hold the system of political actions as a unit before our mind’s eye, as it were, we can see that what keeps the system going are inputs of various kinds. These inputs are converted by the processes of the system into outputs and these, in turn, have consequences both for the system and for the environment in which the system exists. The formula here is very simple but, as I hope to show, also very illuminating: inputs — political system or processes — outputs. These relationships are shown diagrammatically in Figure i. This diagram represents a very primitive „model“ — to dignify it with a fashionable name — for approaching the study of political life. Political systems have certain properties because they are systems. To present an overall view of the whole approach, let me identify the major attributes, say a little about each, and then treat one of these properties at somewhat greater length, even though still inadequately.

(1) Properties of identification. To distinguish a political system from other social systems, we must be able to identify it by describing its fundamental units and establishing the boundaries that demarcate it from units outside the system.

(a) Units of a political system. The units are the elements of which we say a system is composed. In the case of a political system, they are political actions. Normally it is useful to look at these as they structure themselves in political roles and political groups.

(b) Boundaries. Some of the most significant questions with regard to the operation of political systems can be answered only if we bear in mind the obvious fact that a system does not exist in a vacuum. It is always immersed in a specific setting or environment. The way in which a system works will be in part a function of its response to the total social, biological, and physical environment.

The special problem with which we are confronted is how to distinguish systematically between a political system and its setting. Does it even make sense to say that a political system has a boundary dividing it from its setting? If so, how are we to identify the line of demarcation? Without pausing to argue the matter, I would suggest that it is useful to conceive of a political system as having a boundary in the same sense as a physical system. The boundary of a political system is defined by all those actions more or less directly related to the making of binding decisions for a society; every social action that does not partake of this characteristic will be excluded from the system and thereby will automatically be viewed as an external variable in the environment.

(2) Inputs and outputs. Presumably, if we select political systems for special study, we do so because we believe that they have characteristically important consequences for society, namely, authoritative decisions. These consequences I shall call the outputs. If we judged that political systems did not have important outputs for society, we would probably not be interested in them. Unless a system is approaching a state of entropy — and we can assume that this is not true of most political systems — it must have continuing inputs to keep it going. Without inputs the system can do no work; without outputs we cannot identify the work done by the system. The specific research tasks in this connection would be to identify the inputs and the forces that shape and change them, to trace the processes through which they are transformed into outputs, to describe the general conditions under which such processes can be maintained, and to establish the relationship between outputs and succeeding inputs of the system.

From this point of view, much light can be shed on the working of a political system if we take into account the fact that much of what happens within a system has its birth in the efforts of the members of the system to cope with the changing environment. We can appreciate this point if we consider a familiar biological system such as the human organism. It is subject to constant stress from its surroundings to which it must adapt in one way or another if it is not to be completely destroyed. In part, of course, the way in which the body works represents responses to needs that are generated by the very organization of its anatomy and functions; but in large part, in order to understand both the structure and the working of the body, we must also be very sensitive to the inputs from the environment.

In the same way, the behavior of every political system is to some degree imposed upon it by the kind of system it is, that is, by its own structure and internal needs. But its behavior also reflects the strains occasioned by the specific setting within which the system operates. It may be argued that most of the significant changes within a political system have their origin in shifts among the external variables. Since I shall be devoting the bulk of this article to examining some of the problems related to the exchange between political systems and their environments, I shall move on to a rapid description of other properties of political systems.

(3) Differentiation within a system. As we shall see in a moment, from the environment come both energy to activate a system and information with regard to which the system uses this energy. In this way a system is able to do work. It has some sort of output that is different from the input that enters from the environment. We can take it as a useful hypothesis that if a political system is to perform some work for anything but a limited interval of time, a minimal amount of differentiation in its structure must occur. In fact, empirically it is impossible to find a significant political system in which the same units all perform the same activities at the same time. The members of a system engage in at least some minimal division of labor that provides a structure within which action takes place.

(4) Integration of a system. This fact of differentiation opens up a major area of inquiry with regard to political systems. Structural differentiation sets in motion forces that are potentially disintegrative in their results for the system. If two or more units are performing different kinds of activity at the same time, how are these activities to be brought into the minimal degree of articulation necessary if the members of the system are not to end up in utter disorganization with regard to the production of the outputs of interest to us? We can hypothesize that if a structured system is to maintain itself, it must provide mechanisms whereby its members are integrated or induced to cooperate in some minimal degree so that they can make authoritative decisions.

1959, Anthony Stafford Beer    


Das Prinzip der Vervollständigung von außen (BLACK BOX)
98 | FOS: 5.1 Psychology
In: Beer, Anthony Stafford (1959 / 1963). Kybernetik und Management. Frankfurt am Main: S. Fischer Verlag. S.102.

098 (1959) Anthony Stafford Beer

- -



Überlegungen, wie sie Gelehrte wie Gödel zum Problem der Unvollständigkeit formalisierter Sprachen angestellt haben, sind auch auf einem anderen, ganz neuen Feld aufgetaucht. Was ist der Ort einer mathematischen Untersuchung, die sich, statt eigentlich Mathematik zu betreiben, die Frage stellt: Was kann in der Mathematik überhaupt ausgesagt werden? Dieses neue Gebiet ist von einem seiner ersten Vertreter, nämlich von Hilbert, als Metamathematik bezeichnet worden — oder als Beweistheorie. Der zweite der beiden Termini erklärt sich selbst, denn die ganze Problematik hat sich aus Fragen nach der ›Beweisbarkeits ergeben. Der Begriff Metamathematik dagegen bedarf der Erläuterung; er besagt, daß die Sprache, in der wir von einem Satz behaupten, er sei unentscheidbar, nicht dieselbe Sprache ist, derer sich der Satz selbst bedient; sie ist vielmehr eine Sprache höherer Ordnung, die wir als Metasprache bezeichnen.

[…]

[Abbildung]

Mit Hilfe dieses praktischen Beispiels kommen wir zur Formulierung eines Prinzips der angewandten Kybernetik. Dem Unvollständigkeitstheorem von Gödel entsprechend, besagt dieses Prinzip, daß jede Kontrollsprache letzten Endes ihrem Zweck nicht genügen kann, daß sich diese Unzulänglichkeit aber durch die Einschaltung eines Schwarzen Kastens in den Regelkreis beheben läßt. Die Funktion des Schwarzen Kastens besteht darin, auf die Entscheidungen einer höheren Sprache zurückzugreifen und damit die Unzulänglichkeiten der ursprünglichen Entscheidungsmaschine auszugleichen. Diese höhere Sprache läßt sich definitionsgemäß nicht in der Kontrollsprache ausdrücken. Soweit ich sehe, ist dieses Prinzip der angewandten Kybernetik bisher noch nicht wirklich zur Geltung gekommen. Allenfalls hat man von ihm Gebrauch gemacht bei Regelsystemen auf der Betriebsebene, wie wir es hier beschrieben haben. Ich bin indessen fest davon überzeugt, daß dieses Prinzip auf die Konstruktion eigentlich kybernetischer Maschinen angewandt werden muß, die in den Entscheidungsprozeß der Unternehmensleitung einbezogen werden sollen. Ich nenne dieses Prinzip Vervollständigung von außen, weil es eine praktische Methode formuliert, mit der man sich vor dem Unvollständigkeitstheorem schützen kann. Die unentscheidbare Sprache wird durch einen, seinem Wesen nach nicht determinierbaren Schwarzen Kasten in der Wirklichkeit, die diese Sprache zu beschreiben sucht, sozusagen ›verkeilt‹.

Wenn dieser Ansatz schwer verständlich sein sollte, kann man zur Erläuterung eine Analogie aus der elementaren Logik heranziehen. Nehmen wir einmal an, ich kenne die Bedeutung des Wortes ›Kubus‹ nicht. Ich greife zu einem Lexikon und erfahre, daß das Wort ›Würfel‹ bedeutet. Aber auch dieses Wort ist mir nicht geläufig, und ich sehe ein weiteres Mal im Lexikon nach, diesmal unter ›Würfel‹. Hier stoße ich abermals auf ›Kubus‹. Das ist ein Kreisweg: die Wörter sagen mir gar nichts. Der Zirkel der Definition muß aufgebrochen werden — irgend jemand zeigt mir einen Bauklotz und sagt: »Das ist ein Würfel oder ein Kubus.« Ein solches Verfahren nennen wir Realdefinition. Die Sprache wird in der Wirklichkeit ›verkeilt‹. Nach dem gleichen Schema werden die Sachverhalte der industriellen Realität durch das Prinzip der Ergänzung von außen in die unvollständige Kontrollsprache hineingenommen, die diese Sachverhalte beschreiben soll. Wir müssen freilich darauf gefaßt sein, daß das neue Element selbst einer ins einzelne gehenden Definition nicht zugänglich ist. Wir müssen es als Schwarzen Kasten ansetzen.

1961, Gordon Pask    


Manipulating the behavior (is manipulating the evolution)
 | FOS: 5.1 Psychology
In: Pask, Gordon (1961). A proposed evolutionary model. In: Foerster, Heinz von/ Zopf, George W. (Hrsg.)(1961). Principles of Self-Organisation. Pergamon Press. S.244.

018 (1961) Gordon Pask

FIG. 10. Domain observation.



Now I would like to pass on from this to considering what happens when we have a whole lot of automata interacting with the food supply network on which they live. Clearly in this case, there is a perfectly good sense in which the activity of an automaton, and in particular, a species of automaton, generated by the evolution permitted as a result of their previous feeding, will structure the world around them so that this particular species alone is favored. Hence a system of this sort, and it can be argued quite rigorously, is a self-replicating system. Furthermore since these structures, being geometrically bounded, are constrained, there will be a finite size to the structures and things will tend to come apart when they reach this critical limit. What I would like to do is give a special name to this odd kind of structure, which is a close coupling between a lot of automata and the world they live in. I will call it a domain. I will suppose that the domain is an existent in this sort of system, for there is no chance to discuss it adequately at the moment. I am particularly interested in what happens to a domain when, for example, we give the elements a lot of food. I am particularly interested in this because it occurs to me this is one of the ways in which a game-theoretic explanation leads to clarity where others do not.

For example, suppose a three-space, in which we have got these creatures wandering around, and we have a domain (Fig. 10). Suppose I, as an observer, can by some miraculous means put my finger on this ephemeral entity and say that it is an organization which is wandering around, it is automata in equilibrium with their environment, which they modify, which is wandering around in a cube. Supposing I could put my finger on it in this way, I would be doing an operation, if I allowed it more food, if I favored this entity, equivalent to a linear transformation of the payoff function of the game. This is an entirely explicit thing to do. I simply add to each entry in the pay-off matrix, a small positive number. The result of this is that more automata can live within the domain, and they will be the sort of automata which happen to be playing in this region. I will be favoring just those players.

1961, Gordon Pask   Heinz von Foerster


The survival of a self organizing system
 | FOS: 5.3 Educational sciences
In: Pask, Gordon/ Foerster, Heinz von (1961). A predictive model for selforganizing systems. Part II. Cybernetica (Namur). Vol. III, Nr. 4. S.31.

024 (1961) Gordon Pask, Heinz von Foerster

Diagram 13



It is possible to characterize a self organizing system (in the sense of giving instructions to an artefact maker) at a very general level indeed. To do so we note that C(t) can be realized by any system, or material, the states of which satisfy the topological postulates for type I habituation set out by Ashby [22]. Moreover, assignment of different inertial parameters in Ashby’s system clearly gives rise to different Ψ Functions. We thus combine a system called the ›environment‹ m which embodies M, and a system which embodies the topology already mentioned, through an interface. The interface is such that nucleation can occur, and where it has occurred, competitive ›elements‹ will exist [23]. We can then say that for a given Ψ and an M which determines the payoff functions of essential non-zero sum games (for the given Ψ and the decision rules or transfer functions of the elements) there is a U* such that a self organizing system will arise at the interface.

The important point is that the required combination of characteristics can be realized as an artefact — indeed — in a vast number of different artefacts. Our assertion determines, precisely, those environments in which a specified self organizing system can be expected to survive (Diagram I3).

1961, Gordon Pask    


Teaching machines
 | FOS: 5.1 Psychologie
In: Pask, Gordon (1961 / 1972). An Approach to Cybernetics. London: Hutchinson Radius. S.95

025 (1961) Gordon Pask

Fig. 21. An adaptive teaching system applicable if the skill entails welldefined perceptual attributes



Trainees learning to work a ten-key add listing machine have to translate chunks of numerical data such as ‚1278‘, ‚253467‘ (obtained, in real life, from invoices) into rapidly performed sequences of key depressions. At the outset, each chunk poses a realistic problem, and it happens that people learning this skill describe the problem in terms of more or less consistent descriptive attributes. Some of these are:

(i) Number of items in a chunk of data. (Two attributes.)

(ii) Whether the items entail horizontal runs on the keyboard (given the usual layout ‚123‘, ‚456‘, ‚789‘), or

(iii) Vertical runs like ‚141‘, ’25S‘, and ‚369‘.

(iv) Specific constraints such as ‚all items selected from the subset 2-8‘.

Hence a problem is conceived as something possessing or not possessing these attributes in varying degree and the skill is performed after the manner of an elaborate frog that deals with specified conceptual categories. We use a teaching system of the kind in Figure 21. The controller learns the effect of changing attribute values upon 0 (as before, computed from the student’s performance). Then, hill climbing in the attribute space, it aims to maximize O. The mechanical arrangement involves an attribute filter used in reverse. A given state of the controller specifies, for example, that the data presented at this instant shall have four items selected from numerals 2-8, and a horizontal run. The ‚dice thrower‘, which supplies the requisite variety, selects some problem from the ’specified set. Now, for any state of the controller, Figure 21, is a relabelled version of Figure 6 in Chapter 3. Hence, recalling the discussion, this teaching machine presents the student with a suitably adapted sequence of models of the environment he must eventually deal with.

1962, Helmar Frank    


Informationspsychologie
 | FOS: 1.1 Mathematics
In: Frank, Helmar (1962). 7. Informationspsychologie und Nachrichtentechnik. In: Umschau Verlag (Hrsg.)(1962). Kybernetik. Brücke zwischen den Wissenschaften. Frankfurt am Main: Umschau Verlag. S.99.

003 (1962) Helmar Frank

Bild 7.6: Organogramm für den Informationswechsel im Menschen — das Modell der Informationspsychologie in seiner augenblicklichen Entwicklungsstufe.



Das Modell, das die Informationspsychologie zugrunde legt und das durch die oben skizzierten Versuche und manche anderen sich als brauchbar erwies, läßt sich durch das Organogramm von Bild 7. 6 umreißen.

Die vermöge der Sinnesorgane „perzipierte“ Information wird der Apperzeption durch den Kurzspeicher in den Projektionszentren und Bezirken der Gestaltwahrnehmung angeboten. Die Gestaltwahrnehmung beruht dabei auf der meist schon außerhalb des Kurzspeichers erfolgenden Gleichsetzung verschiedener Informationen.

Ein erheblicher Teil der Information wirkt sich in Form unbewußter Reflexe aus.

Der Kurzspeicher ist der Ort bewußter Informationsverarbeitung durch „reflexive Bewußtseinsprozesse“, wobei Inhalte des Kurzspeichers durch Konzentration auf sie über die Gegenwartsdauer hinaus gewahrt werden können. Die vom Kurzspeicher angegebenen Informationen, die sogenannten Realisationsbeträge (im Höchstfall wahrscheinlich wieder 16 bit/sec), dienen der Erregung der Muskelfasern (Signalisation), eventuell durch Auslösung von motorischen Programmen, so daß z. B. nur der Entschluß, zu gehen,  bewußt, erfolgt — die Einzelbewegungen ergeben sich aus einem erlernten Gehprogramm.

Der aufmerksame Leser dieses und des letzten Teils überlegt sich leicht, daß der Kurzspeicher
nachrichtentechnisch durch ein 160-stelliges Schieberegister darstellbar ist, dessen Inhalte pro SZQ um eine Stelle weiterrücken, wobei sie durch zugeschaltete, die reflexiven Bewußtseinsprozesse abbildende Schaltungen verändert werden können. Das vorbewußte Gedächtnis kann weltgehend durch Lernmatrizen nachgebildet werden. Die uns evidente, dem Informationspsychologen aber nicht sehr wesentliche Tatsache, daß die Inhalte des Kurzspeichers uns bewußt sind, kommt natürlich in einem nachrichtentechnischen Modell nicht zum Ausdruck. Hier beginnt aber auch für den Psychologen die Metaphysik.

1962, Donald L. Bitzer   Peter G. Braunfeld


Teaching machine
 | FOS: 2.2 Electrical engineering
In: Bitzer, Donald L. & Braunfeld, Peter G. (1962). Computer teaching machine project: PLATO on Illiac. In: computer and automation, Vol. XI, Nr. 2, February 1962. S.18.

022 (1962) Donald L. Bitzer: Peter G. Braunfeld

Fig. 2 PLATO programmed logic.



A certain teaching machine developed at this laboratory has been named PLATO, standing for „Programmed Logic for Automatic Teaching Operations“.

It is a device for teaching a number of students individually by means of a single, central, high-speed, general-purpose digital computer, in this case the lLLIAC, the University of Illinois automatic computer. The general structure of PLATO is indicated in Fig. 1. For simplicity, only one student is represented in the diagram. The central element of PLATO is the high-speed digital computer.

Each student communicates with the computer by means of his own keyset, which can be provided with up to 64 keys representing a full complement of alphanumeric characters. When asked to answer questions posed to him by the machine, the student’s answers may thus take such varied forms as numerals, algebraic expressions, and words or phrases.

Special keys enable the student to control the presentation of material to him by the machine. The machine communicates with each student by means of closed-circuit-television. Material is presented in two different ways:

(1) The machine presents static textual material by commanding an electronic switch to connect the video output of the appropriate slide to the appropriate student’s display.

(2) Dynamic non-textual material, or material furnished in the course of instruction (such as student answers), is written by the machine on the student’s TV display tube by means of an intervening buffer storage tube.

For multiple, student operations, a keyset, television display, and intermediate output buffer storage device are provided for each student. The central computer and slide selector, however, need not be duplicated; they serve all students on a time-shared basis.

It appears to be important in multiple-student operations, to require the condition that no student shall be aware of any other student’s existence. To meet this condition, we are requiring the computer to respond to any student’s request within 200 milliseconds.

The general logic by which instruction takes place is indicated by Fig. 2.

Textual material is presented on a sequence of slides. When the student has finished reading a given slide, he may proceed to the next slide by pushing the „continue“ button on his keyset. Similarly, if he desires to review material contained on a previous slide, he may do so by pushing „reverse“. On certain slides, questions are posed to the student. He cannot „continue“ beyond such a slide until he has successfully answered all the questions theron. As the student types in his answer, the machine displays it — character by character — in the space provided for the answer on the slide. As soon as the student indicates to the machine that he has completed his answer, the machine responds by indicating „OK“ or „NO“, depending on the correctness of the answer. The student may continue to punch in revised answers until the machine indicates that the answer is correct.

If the student indicates to the machine that he needs help in answering the question — by pushing the „help“ button — the machine jumps to a „HELP“ sequence appropriate to that question. In this sequence, further relevant textual material, if necessary, is presented, and the original question is broken up into a series of „easy“ subquestions, designed to lead the student stepwise to the solution of the main question. A student need not complete a help sequence. At any point in the help sequence, he may indicate to the machine his desire to be confronted once again with the original troublesome question by pushing the „aha“ button. As indicated in Fig. 2, failure to answer this question properly, leads to a return to the help sequence at the point it was broken off. In the case where a student should feel it necessary to ask for help for a question posed in the help sequence, the machine itself will provide him with the appropriate correct answer to that question. The important features of the machine are:

1. The material is presented to every student in a standard, objective fashion.
2. Each student may proceed at his own speed, seeking as much or little supplementary material as he wishes, subject to the boundary condition that he must solve successfully a prescribed sequence of problems.
3. The machine keeps an accurate record of each „move“ the student makes. Thus at the end of an instruction period, the experimenter has at his disposal a print-out of how long the student spent on each page, what right and wrong answers were given and in what sequence, how long a problem took for solution, at what points help was requested, etc.
4. The student knows as soon as he has worked the problem, whether his solution is correct or incorrect. In the latter case, the machine can indicate „NO“ without in any way revealing the correct solution.
5. To test the versatility of the machine as well as the basic logic of the computer program, a number of instructional sequences have been prepared ranging from topics in mathematics (such as the elementary theory of congruences) to instruction in computer programming. To change machine instruction from one subject-matter to another requires only replacing slides in the slide selector and giving the computer an appropriate set of parameters.

A study using the machine to teach high school students the binary and other non-decimal number representations has been completed. Post-tests given the students participating in this study indicated that they had been able to learn from the machine. It also provided useful information on data-rates-considering the teaching system from the standpoint of an information processing system. Studies on teaching students computer programming are currently in progress.

1962, Johann Leo Weisgerber    


Sprachwissenschaft
 | FOS: 6.2 Languages and literature
In: Weisgerber, Johann Leo (1962). Grundformen sprachlicher Weltgestaltung. Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen, Geisteswissenschaften 87. Sitzung am 21. März 1962 in Düsseldorf. Heft 105. Wiesbaden: Springer Fachmedien. S. 28.

044 (1962) Johann Leo Weisgerber

Die vier Schauplätze des Wortens der Welt



Von diesem Ansatz aus ließe sich schematisch ein Gegenüber von Wirklichkeit und Welt ableiten, das allerdings weniger als Gegensatz zu verstehen ist, sondern viel eher als Eingebettetsein menschlich gelebter Welt in übergreifende Wirklichkeit. Insbesondere wäre zu beachten, daß Welt und Wirklichkeit weder einfach als Menschliches und Außermenschliches zu interpretieren noch durch unveränderliche Schranken voneinander getrennt zu denken sind. Menschlich gelebte Welt wird aus der Gesamtheit menschlicher Sinnes- und Geisteskräfte heraus gestaltet. Dabei kann sowohl innermenschliche Welt ausgebaut wie außermenschliche Wirklichkeit anverwandelt, in menschliche Welt übergeführt, wie Menschliches in der Ungewußtheit der Wirklichkeit belassen werden. Sieht man menschlich gelebte Welt unter diesen Bedingungen, so ist ihr Aufbau von allen menschlichen Kräften getragen und grundsätzlich als eine Ganzheit anzusehen. Trotzdem wird man die spezifischen Wirkungsweisen einzelner dieser Kräfte zu analysieren suchen. In sinnvoller Analogie zu den spezifischen Anverwandlungsformen der einzelnen körperlichen Sinne (Auge, Ohr usw.) wird man auch nach den spezifischen Wirkungsweisen einzelner geistiger Kräfte fragen.

Auf die Sprachkraft angewandt, würde sich das so darstellen: Angesichts der charakteristischen Wirkungsform der Sprachkraft (deutliche Erkennbarkeit der sprachlichen Zugriffe) ist es gerechtfertigt, dem spezifischen Einschlag der Sprache im Aufbau menschlicher Welt nachzugehen. Es scheint, daß man grundsätzlich mit vier Grundformen möglicher sprachlicher Wirkungsweise rechnen kann, mit „vier Schauplätzen des Wortens der Welt“. Alles was die Sprachkraft erarbeiten kann, zeigt den Grundcharakter von Welt: dem menschlichen Bewußtsein zugängliche, den menschlichen Möglichkeiten angemessene Aufbauelemente gelebter Welt. Die Rede von einer Sprachwelt zeigt hier ihren vollen Sinn: der Inbegriff aller die sprachliche Auseinandersetzung des Menschen mit seiner Lebenswirklichkeit vollziehenden Zugriffe.

Beim Aufbau menschlicher Sprachwelt sind die vier Grundfälle denkbar:

I. Die Sprachkraft tritt in unmittelbare Wechselwirkung mit der Wirklichkeit.
II. Die Sprachkraft trifft auf bereits durch andere menschliche Sinnes- und Geisteskräfte in menschliche Welt übergeführte Wirklichkeit.
III. Die Sprachkraft trifft auf die Entfaltungsformen innermenschlicher Welt aus außersprachlichen menschlichen Kräften.
IV: Die Sprachkraft schafft gemäß ihrem eigenen Gesetz geistige Sprachwelt.

Bei aller Schematisierung werden hier vier verschiedene Bedingungskomplexe deutlich, aus denen in jeweils eigener Weise Sprachwelt erwächst. In der Ganzheit einer bestehenden Sprache müßten sie alle vier nachweisbar sein und umgekehrt müßten alle sprachlichen Zugriffe (in einfacher oder auch verwickelter Form) mit ihnen in Verbindung stehen. Es muß also im Konkreten aufgesucht werden, ob wir damit vier Grundsituationen des Wortens der Welt aufgedeckt haben und ob von da aus die einzelnen Sprachphänomene in ihrer Leistung, in der Tragweite ihres Zugriffs beurteilt werden können.

1962, Rul Gunzenhäuser    


Informationstheoretischen Modelle für ästhetische Prozesse
 | FOS: 1.2 Computer and information sciences
In: Gunzenhäuser, Rul (1962). Ästhetisches Mass und ästhetische Information. Quickborn: Verlag Schnelle. S.82.

061 (1962) Rul Gunzenhäuser

- -



Die Birkhoffsche Theorie erweist sich als mathematisches „Modell“ für Vorgänge der ästhetischen Wahrnehmung. Im Rahmen einer anderen Modellvorstellung, wie sie F. v. Cube für ein Lernmodell auf der Basis der Informationstheorie entwickelt (Cube, 1962), wird es gelingen, Aussagen der mathematischen Informationstheorie auf bestimmte ästhetische Prozesse anzuwenden und so auch Aussagen der Birkhoffschen Theorie zu bestätigen. 

Den zugrundegelegten Modellbegriff präzisiert v. Cube durch folgende Definition: „Ein Modell ist eine Realisation einer mathematischen Theorie oder eines Teiles einer solchen.“ Diese Definition ist zweckmäßig, weil sie der umgangssprachlichen Bedeutung von Modell als „konkretes, konstruiertes und vereinfachtes Abbild“ eines Wirltlichkeitsbereichs auf dem Umweg über eine Theorie nahe kommt, weil sie die Realisationen einer Theorie in einem gegebenen wie auch einem konstruierten Wirltlichkeitebereich erfaßt und weil auch der ursprünglich untersuchte Wirklichkeitsbereich, aus dem die Theorie abstrahiert wurde, auf diese Weise zu einem Modell unter anderen (isomorphen) Modellen wird. Die Gesamtheit der möglichen Realisationen einer Theorie wird damit aufgefaßt als eine Klasse „untereinander isomorpher Modelle“.

Entsprechend den Begriffen „unvollständige“ und „vollständige“ Theorie hat man wissenschaftstheoretisch zwei verschiedene Arten von Realisationen zu unterscheiden: Man spricht von einer begrifflichen Realisation (einem Modell I. Art einer unvollständigen Theorie, wenn man ihren axiomatisch festgelegten Grundbegriffen und damit auch ihren Theoremen gewisse „Inhalte“ d.h. Werte innerhalb eines fixierten Sprachsystems zuordnet. Der Mathematiker mag hier an die verschiedenartigen Modelle einer hyperbolischen nicht-euklidischen Geometrie denken. Eine solche Realisation braucht nicht an einem Wirklichkeitsbereich orientiert zu sein — die Zuordnung der Inhalte kann, wie dies auch in der Mathematik üblich ist, völlig frei erfolgen. Läßt sich jedoch ein solches Modell 1. Art innerhalb eines Bereiches der Wirklichkeit durch Beobachtungen oder Experimente verifizieren, so wird die Theorie zu einer „vollständigen Theorie“ und jede ihrer Realisationen zu einem „Modell 2. Art.

1962, Andrew P. Sage   James L. Melsa


Electronic simulation of the biological clock
 | FOS: 2.2 Electrical engineering
In: Sage, Andrew P. / Melsa, James L. (1962). Electronic simulation of the biological clock. In: Bernard, Eugene E./ Kare, Morley R. (1962). Biological Prototypes and Synthetik Systems. New York: Plenum Publishing Corporation. S.181.

068 (1962) Andrew P. Sage: James L. Melsa

Fig. 14. Block diagram of electronic model for biological clock.



The term biological clock has been given to the phenomenon displayed by organisms, both plants and animals, that pace their functions in a cyclic fashion relat~d in some way to environmental stimuli. In this discussion, we shall be dealing primarily with formulation of a model for the timing mechanism by which organisms mark the passage of the hours of the day and with the external stimuli which influence this timing mechanism.

[…]

The electronic model presented in this report has attempted to circumvent these difficulties. This model parallels very closely the mathematical model in relation to determining the times for onset and termination of activity as separate problems.

A general block diagram of the proposed electronic model is shown in Fig. 14. Basically, the model consists of three functional units: (1) an endogenous clock unit, (2) a conditional response unit, and (3) decision units. The endogenous clock unit includes the master clock and trigger, the activity control, and the animal state circuits. These circuits are used to pace the animal’s internal rhythms and to supply information concerning the animal’s present state to the conditional response and decision units. The conditional response unit comprises the analog portion of the model and is used to determine the amount of phase shift that should be applied, while the decision or logic units make all of the required decisions for the model in terms of past and present information concerning the endogenous clock unit and external stimuli.

In typical operation of the model, an advancing or delaying signal in the form of a positive or negative voltage level will be added with a voltage sweep generated by the master clock. When the combination of the two voltages reaches some preset value, the output of a comparitor indicates the onset of activity. If no advancing or delaying signal is present, the time between any two successive onsets of activity will be equal to the endogenous period of the animal. At an onset of activity signal, the activity control begins counting the animal’s normal and minimum active periods. The logic circuits determine whether the animal should advance or delay his onset of activity or become inactive. After the logic circuits have determined that a delay or advance should be made, the conditional response controller determines the amount of phase shift to be applied to the endogenous clock unit.

1963, Gilbert Simondon    


Les sciences de l'homme
 | FOS: 6.3 Philosophy ethics and religion
In: Simondon, Gilbert (2016). Sur la Philosophie (1950 - 1980). Paris: Presses Universitaires De France. S.225

015 (1963) Gilbert Simondon

Schéma du cycle de développement



Un organisme est rattaché au milieu par trois fonctions irréductibles:

la réception d’information, ou fonction d’entrée
l’action, ou fonction de sortie;
l’alimentation, ou fonction d’assimilation et mise en réserve d’énergie à l’état potentiel.

La survie d’un organisme, individuel ou social, peut être, selon les circonstances, conditionnée par l’une de ces trois fonctions, qui devient dominante, et polarise l’ensemble de la situation. En chacun des trois types possibles de situation critique, la fonction correspondant au manque, ou stress, gouverne les deux autres, les asservit en quelque mesure, leur fournit des schèmes directeurs. La situation de quelque mesure, leur fournit des schèmes directeurs. La situation de dominance de l’une des trois fonctions se trouve réalisée lorsque la relation d’un organisme au milieu se trouve saturée pour deux des fonctions alors qu’elle manifeste un manque, un danger, un pouvoir de décision pur la troisième: toute la métastabilité de la relation entre l’organisme et le milieu se trouve, en ce cas particulier, ramenée aux conditions d’accomplissement de la fonction non-saturée, en laquelle il y a ‚disette.

Or, dans les modes que l’homme a découverts de penser son milieu (la nature) ou de se penser lui-même (cherchant à fonder les sciences de l’homme) se manifestent trois dominances successives: celle des fonctions d’information, dans l’Antiquité, puis celle des fonctions d’actions, à l’époque moderne. Les théories de la Nature aussi bien que celles de l’Homme sont, dans l’Antiquité, à base de schèmes perceptifs, à l’époque classique, à base de schèmes opératoires, et à l’époque moderne, à base de schèmes énergétiques.

Comme source d’intelligibilité, la notion antique de forme joue le même rôle que la notion classique de causalité mécanique ou la notion moderne de besoin; cependant ces trois notions sont irréductibles, parce que la première exprime une façon de concevoir la fonction d’information, la seconde, une façon de concevoir la fonction d’action, et la troisième, une façon de représenter la fonction d’alimentation.

1963, Maruyama Magoroh    


Mutual Causal Processes
 | FOS: 2.11 Other Engineering and Technologies
In: Maruyama, Magorho (1963). The Second Cybernetics: Deviation-Amplifying Mutual Causal Processes. In: American Scientist, Vol. 51, No. 2 (Juni 1963). S.176.

028 (1963) Magoroh Maruyama

Fig. 3.



Mutual causal relationships may be defined between more than two elements. Let us look at the following diagram. The arrows indicate the direction of influences. + indicates that the changes occur in the same direction, but not necessarily positively. For example, the + between G and indicates that an increase in the amount of garbage per area causes an increase in the number of bacteria per area. But, at the same time, it indicates that a decrease in the amount of garbage per area causes a decrease in the number of bacteria per area. The — between S and B indicates that an increase in sanitation facilities causes a decrease in the number of bacteria per area. But, at the same time, it indicates that a decrease in sanitation facilities causes an increase in the number of bacteria per area.

As may be noticed, some of the arrows form loops. For example, there is a loop of arrows from P to M, M to C, and C back to M. A loop indicates mutual causal relationships. In a loop, the influence of an element comes back to itself through other elements. For example, in the loop of P-M-C-P, an increase in the number of people causes an increase in modernization, which in turn increases migration to the city, which in turn increases the number of people in the city. In short, an increase in population causes a further increase in population through modernization and migration. On the other hand, a decrease in population causes a decrease in modernization, which in turn causes a decrease in migration, which in turn decreases population. In short, a decrease in population causes a further decrease in population through decreased modernization and decreased migration. Whatever the change, either an increase or a decrease, amplifies itself. This is so when we take population as our criterion. But the same is true if we take modernization as a criterion: an increase in modernization causes a further increase in modernization through migration and population increase; and a decrease in modernization causes a further decrease in modernization through decreased migration and decreased population. The same holds true if we take the migration as the criterion.

In a loop, therefore, each element has an influence on all other elements either directly or indirectly, and each element influences itself through other elements. There is no hierarchical causal priority in any of the elements. It is in this sense that we understand the mutual causal relationships.

1963, Karl W. Deutsch    


Informationsströme und Steuerungsfunktionen im Prozeß der außenpolitischen Entscheidungsbildung
 | FOS: 5.6 Political Science
In: Deutsch, Karl W. (1963 / 1966). Politische Kybernetik. Modelle und Perspektiven (The Nerves of Government). Freiburg i. Br.: Verlag Rombach. S.340.

084 (1966) Karl W. Deutsch

Informationsströme und Steuerungsfunktionen im Prozeß der außenpolitischen Entscheidungsbildung: Versuch einer schematischen Darstellung



Autonomie oder Selbststeuerung ist ein Merkmal aller Organisationen, deren Verhalten durch eine zyklische Abfolge von auf den Entscheidungszyklus selbst zurückwirkenden Entscheidungen gelenkt wird. Eine einfache Organisation dieser Art empfängt eine Information über ein äußeres Ziel und wird von ihrem eigenen inneren Ungleichgewicht zur Annäherung an dieses Ziel getrieben; auf der nächsten Stufe ihres Verhaltens wird sie durch den Empfang von Informationen gelenkt, die sowohl das Ziel wie ihr eigenes Verhalten und ihre Position gegenüber dem Ziel betreffen. Auf diese Weise empfängt sie Informationen, die darüber Aufschluß geben, wie weit sie vom Ziel noch entfernt ist oder wie weit sie schon über das Ziel hinausgegriffen hat; unter gewissen Bedingungen dient diese Information dazu, ihre Annäherungsweise zu korrigieren und sie durch eine Reihe von immer kleiner werdenden Fehlleistungen hindurch bis zur Erreichung des Zieles zu lenken. Eine komplexere Organisation dieser Art kann in der Lage sein, zwischen der Verfolgung mehrere Ziele abzuwechseln oder unter gewissen Bedingungen ihre innere Struktur teilweise so zu verändern, daß sie sich selbst neue Ziele setzt.
Um wirklich autonom zu sein, müssen solche komplexen selbststeuernden Organisationen auch einen breitgestreuten Vorrat gespeicherter Daten aus der Vergangenheit bei sich tragen und die Entnahme dieser Erinnerungen mit Hilfe von Rückkopplungsprozessen regeln, die im wesentlichen den Prozessen gleichen, mit denen sie sich Informationen aus der Außenwelt beschaffen. Zur Autonomie gehört also die Rückkopplung eines aus dem Gedächtnis entnommenen Datenstromes in einen Strom von Entscheidungen, die das aktuelle Verhalten betreffen. Die Stellen, an denen diese zwei Arten von Kommunikationskanälen zusammentreffen, sind die strategisch wichtigen Stellen des Entscheidungssystems. Wenn wir fragen, wo in einer großen Organisation das »Selbst« dieser Organisation konzentriert ist, dann fragen wir im Grunde nach der Position der Stellen, die für die Steuerung der Organisation am entscheidensten sind.

Die hauptsächlichen Ansammlungen von Erinnerungen (die sich in einer Organisation in den Köpfen einiger weniger Personen befinden können) und die hauptsächlichen Knotenpunkte der Entscheidungskanäle, an denen diese Erinnerungen auf die aktuelle Entscheidungsbildung einwirken, sind in diesem Sinne strategische Entscheidungsstellen. Die Anordnung solcher Entscheidungsstellen kann im Lernprozeß von großer Bedeutung sein. Von außen her gesehen lernt eine Organisation, wenn sie auf die Wiederholung eines unveränderten Reizes mit einer beobachtbaren Veränderung ihres Verhaltens reagiert. Von innen her gesehen ist eine solche wiederholte Veränderung des Verhaltens nur möglich aufgrund eines inneren Strukturwandels. Gewöhnlich wird sich eine solche innere Strukturveränderung entweder auf den Inhalt und Verteilungszustand von Erinnerungen oder auf die Anordnung und Reihenfolge der Entscheidungsstellen oder auf beides zugleich beziehen.

Individuen wie auch große soziale oder politische Organisationen können also lernen, ihr Verhalten laufend zu ändern. Sie können ihre Aufmerksamkeit in eine neue Richtung lenken, einzelne Präferenzen verändern und auch die Struktur und Konsistenz größerer Teile ihres Präferenzensystems modifizieren. Alles, was sie zu irgendeinem Zeitpunkt in der Außenwelt tun, ist ein Ausdruck der Verhaltenswahrscheinlichkeiten, die ihrer inneren Struktur in diesem Augenblick innewohnen. In diesem Sinne sagt man von Personen, sie handelten »Ihrem Charakter gemäß« oder entsprechend ihren inneren Bedürfnissen, Trieben und Persönlichkeitsstrukturen. Von politischen Parteien oder Regierungen sagt man, sie handelten gemäß den politischen und sozialen Präferenzen der Organisationen und sozialen Gruppen, aus denen sie sich zusammensetzen oder auf deren Unterstützung sie angewiesen sind; von souveränen Staaten heißt es zuweilen, ihre auswärtigen Beziehungen würden weitgehend von ihrer Innenpolitik bestimmt.

Unsere Darstellung der Arbeitsweise selbständig handelnder Organisationen scheint darauf hinzudeuten, daß diese Auffassungen nur teilweise zutreffend sind. Jede selbständig handelnde Organisation muß aus ihrer Umwelt wesentliche Informationen beziehen und ihr äußeres Verhalten entsprechend modifizieren. Zugleich aber muß sie die Auswirkung ihres eigenen, von der Umwelt modifizierten Verhaltens wieder an sich selbst zurückmelden. Je größer das Maß ihrer Autonomie, desto größer muß das Ausmaß und die Leistungsfähigkeit der Speicheranlagen sein, die sie benutzt; je leistungsfähiger diese Speicheranlagen sind, desto wahrheitsgetreuer werden sie die Informationen speichern, die sich aus der sich verändernden Umwelt und den wechselnden Reaktionen der Organisation auf diese Umwelt ergeben. Jedes selbständig handelnde System muß deshalb, während es handelt, seine eigenen Erinnerungen und seine innere Struktur laufend umgestalten. Diese internen Veränderungen können bei jedem einzelnen Schritt groß oder klein ausfallen, ihr kumulativer Effekt wird auf jeden Fall beachtlich sein. Wenn Soziologen wie Don Luigi Sturzo die Vorstellung von einer kollektiven »Persönlichkeit« auf Völker und Staaten übertrugen, so können wir auf diese »Persönlichkeit« vielleicht den Gedanken Jean-Paul Sartres anwenden, daß wir in jedem Augenblick unseres Lebens gemäß unserer Persönlichkeit handeln, sie aber zugleich mit jeder Entscheidung unausweichlich umgestalten. Jedes autonome Entscheidungssystem wird nach dieser Darstellung wahrscheinlich früher oder später seine innere Struktur neu ordnen. Ob diese Umgestaltung lebenserhaltend oder pathologisch (in der Terminologie Robert K. Mertons »funktional« oder »dysfunktional«) sein wird, hängt davon ab, ob sie die Wahrscheinlichkeit, daß das System künftig erfolgreich funktionieren wird, erhöht oder vermindert, insbesondere auch davon, ob sie die künftige Lernleistung des Systems steigert oder nicht.

1963, William N. McPhee   Jack Ferguson


Voting model
 | FOS: 5.3 Sociology
In: McPhee, William N. (1963). Formal theories of mass behavior. Glencoe, Illinois: The Free Press. S.76.

088 (1963) William N. McPhee

Figure 1. Flow Chart of the model



1. Introduction

The purpose of this paper is to describe a social influence process that is not vulnerable to the objections raised by psychologists and political scientists to what they call „excessive sociologizing“ in the explanation of choices.

The choices here happen to be votes — although the process to be described is not limited to this application. What is meant by „social influence“ is the observation that people in close contact for long periods, such as husbands and wives or parents and children, are found to have remarkably nonindependent preferences. At any given time, their choices are highly correlated. What is meant by objectionable „sociologizing“ of this phenomenon however, are interpretations of how these correlations come about over time. It is too easy to make the choice itself a function of deliberate social manipulation by others or conscious adaptation to others.

No one really advocates this kind of „social determinism,“ however. Nearly everyone admits the necessity, and most of us the primacy, of two other determinants of the immediate choice: namely, (1) external political stimuli such as current events and (2) internal psychological dispositions such as political party loyalties learned in the past. But if we admit the primacy of these brute facts, then how can responses to them nevertheless be so correlated with the subtle cues from others in the contiguous social environment?

This paper describes a social influence process that has the desired subtlety. It leaves the determination of the choice at all times to external (that is, political) stimuli and individual (that is, psychological) dispositions. Working through these, however, such a process is capable of generating any of the social correlations found in choice data.

2. A three-process model of voting
The influence process to be described is one of three processes that make up a model for the study of voting behavior. It is no gecident that the other two processes concern the primary determinants of voting referred to above: the response to external stimuli and the learning of internal dispositions. The complete model has been described in detail elsewhere. It was designed and is being used for large problems of national scope and historical time spans. Therefore, the processes by which a single individual forms a single vote in one election are necessarily too simple to be interesting as psychological theories. Here they will be briefly explained and with a certain amount of literary license by the flow diagram of Figure 1.

This model is operated in a computer. We shall assume that a large sample of „voters,“ representing a community in some political period, has already been put into the machine storage or memory of the computer. Each voter is represented by a limited series of characteristics, many of which will be modified by events during each election period. Let us assume that we are about to start an „election,“ as one of a sequence of them.

The model first takes from the input hopper an iniection of „political stimuli“ for the period since the last election. These are distributions of stimuli graded as to their attractiveness or cogency from strong to weak. The distributions differ for different groups in the sample electorate, as determined by needs of the problem not relevant here.

1963, Abraham Moles    


La théorie de l'information et leur application aux langages
 | FOS: 2.2 Electrical engineering
In: Moles, Abraham (1963). Les bases de la théorie de l'information et leur application aux langages. In: Moles, Abraham & Vallancien, Bernard (Hrsgg.)(1963). Communications et Langages. Paris: Gauthier-Villars. S.24.

095 (1963) Abraham Moles

Fig. 7. — A chaque niveau de communication entre l'émetteur et le récepteur par un canal quelconque, il est tou jours possible de distinguer deux aspects dans le message. D'un côté, l'aspect sémantique, correspondant à un certain répertoire de signes normalisés universels, de l'autre, l'aspect esthétique (Moles) ou ectosémantique (Meyer-Eppler) qui est l'expression des variations que le signal peut subir sans perdre sa spécificité autour d'une norme; ces variations constituent un champ de liberté que chaque émetteur exploite d'une façon plus ou moins originale. Le message qui parvient au récepteur peut donc être considéré comme la somme des informations proprement sémantiques Hs, et esthétiques He.



4. Informations sémantique et esthétique.

La reconnaissance dans les objets sonores de formes normalisées, celles que dénomment les signes de l’alphabet phonétique, n’épuise pas la richesse du réel perceptibles. Le message sonore réel est la somme
Forme normalisée + Variations
et la forme normalisée reste un simple repère, susceptible de fluctuations notables dans sa durée, son timbre, sa hauteur, en bref son architecture. Il y a autour du signal normalisé, assemblage de symboles puisés dans un certain répertoire dont on peut calculer l’originalité et que nous appellerons Information sémantique Hs, une marge de fluctuations, un champ de liberté, dont l’aire comporte un nombre fini de seuils différentiels de la perception auditive à chaque instant. La façon plus ou moins originale par rapport au récepteur, dont le transmetteur fait usage de ce champ de liberté, représente aussi une forme temporelle, un message à la sensation, ce que nous appellerons un message esthétique, et nous pourrons, au moins théoriquement, calculer la complexité de cette forme fluctuante à l’intérieur de ce champ de liberté situé autour de la forme normalisée. On est donc amené à reprendre l’ensemble de l’analyse précédente et à définir, à côté de l’information sémantique du message, une information esthétique He à chaque niveau d’attention du récepteur. C’est la somme Hs, + He qui exprime la totalité de l’effort d’appréhension des récepteurs. Aussi, la phonétique linguistique se propose-t-elle, dans le cadre de la Théorie de l’information, deux buts

I° le calcul de l’information sémantique à partir de la détermination des éléments normalisés et des statistiques y afférentes; lettres phonétiques, mots phonétiques, phrases phonétiques, etc.; l’étude de leurs règles d’assemblage;
2° le calcul de l’information esthétique à partir de la dimension du champ de liberté laissé autour du message sémantique, champ dont la grandeur est estimée par le nombre de seuils différentiels de sensibilité, de quanta acoustiques de la perception qu’il contient.

 

Fig. 7. — A chaque niveau de communication entre l’émetteur et le récepteur par un canal quelconque, il est tou jours possible de distinguer deux aspects dans le message. D’un côté, l’aspect sémantique, correspondant à un certain répertoire de signes normalisés universels, de l’autre, l’aspect esthétique (Moles) ou ectosémantique (Meyer-Eppler) qui est l’expression des variations que le signal peut subir sans perdre sa spécificité autour d’une norme; ces variations constituent un champ de liberté que chaque émetteur exploite d’une façon plus ou moins originale. Le message qui parvient au récepteur peut donc être considéré comme la somme des informations proprement sémantiques Hs, et esthétiques He.

1964, Andrew Gordon Speedie Pask    


Theater
 | FOS: 6.4 Art (arts, history of arts, performing arts, music)
In: Pask, Gordon (1964). Theatre Workshop & System Research. Proposals for a Cybernetic Theatre. Privat verbreitete Monographie. System Research Ltd. and Theater Workshop. Paper Nº57 (Original Bibliographie von G. Pask.) In: Furtado, Gonçalo & Pangaro, Paul (2008). Gordon Pask’s North American Archive: Contents Listing, New York: Pangaro Inc.

013 (1978) Gordon Pask

DIAGRAM 5.



In a real life dramatic presentation, some of the outcomes are determined by the Structural Situations of axiom (8). Thus the initial scene is necessarily always determined by a structural situation. Similarly, in a musical show, most of the songs and all of the large production numbers would be of this calibre. This programme does not, of course, account for the complete organisation of a dramatic presentation but a sufficiently accurate account is provided by the programme in DIAGRAM 5. Given an outcome, say the n-th outcome , the A audience receives metainformation from ?, and the B audience receives its metainformation from ?. The A audience preferences and the B audience preferences are interpreted by ? and ? to yield advice to A and B who choose amongst the allowed alternatives at the n-th stage in the plot to determine the n+l-th outcome . In DIAGRAM 5 we have shown the set of n+2th outcomes as the end of a scene to indicate the position of an identification point at which members of the audience are allowed to reidentify themselves with the characters. Thus the composition of the A audience and of the B audience is able to change at this instant and when the plot is continued the identification memory will contain an image of the audience choice of identification resulting from their experience up to the n+2th stage in the dramatic presentation.

1964, Michael A. Arbib    


(Logical) Models of Neural Networks
 | FOS: 1.1 Mathematics
In: Arbib, Michael A. (1964 / 1987). Brains, Machines, and Mathematics. New York, Berlin, Heidelberg: Springer. S.16.

072 (1964) Michael A. Arbib

Figure 2.1 The nervous system considered as a three-stage system.



I want to start by giving a very sketchy account of neurophysiology- merely sufficient as a basis for our first mathematical model. We may regard the human nervous system as a three-stage system as shown in Figure 2.1.* Our fundamental hypothesis in setting up our model is that all the functioning of the nervous system relevant to our study is mediated solely by the passage of electrical impulses by cells we call neurons. Actually, the human brain contains more glial cells than it contains neurons, but it is neurophysiological orthodoxy to believe that these glial cells served only to support and nourish the neurons–functions irrelevant to our study. Throughout this book, we shall ignore such posited glial functions. We shall also ignore such modes of neural interaction as continuously variable potentials and transmission of hormones. In setting up our possible mechanisms, neural impulses will fully suffice-future developments will, of course, require the ascription of far greater importance to the other neural functions and perhaps to the glia. In the light of our fundamental hypothesis, then, we shall simply view the nervous system proper as a vast network of neurons, arranged in elaborate structures with extremely complex interconnections. This network receives inputs from a vast number of receptors: the rods and cones of the eyes; the pain, touch, hot, and cold receptors of the skin; the stretch receptors of muscles; and so on; all converting stimuli from the body or the external world into patterns of electrical impulses that convey information into the network. These interact with the enormously complicated patterns already traveling through the neural net (there are estimated to be more than 1010 neurons in the neural net which is the human brain) and result in the emission of impulses that control the effectors, such as our muscles and glands, to give our responses. Thus we have our three-stage system: receptors, neural net, and effectors.

1964, Uno Kōzō    


The circulation-process of capital
 | FOS: 5.2 Economics and business
In: Uno, Kozo (1964 / 1980). Principles of political economy · Theory of a purely capitalist society. Sussex: Harvester Press. S.41.

097 (1964) Kōzō Uno

- -



  1. Since the production-process P is embedded in the circulation formula M — C … P … C‘ — M‘, capital always produces with the commodities C that it has purchased. Hence the cost of production does not immediately appear to capital as labour expended on its product. It is true, as pointed out earlier, that capital reckons in its process of value formation and augmentation not only the new labour flowing from the current consumption of labour-power, but also the old labour already materialised in the means of production and simply transferred to the new product as making up the latter’s total labour embodiment. From the point of view of its circulation-process, however, capital regards labourpower, the source of value-forming labour, and the means of production both of which it has purchased as commodities, as expenses or costs incurred in production. Thus the formation and augmentation of value that takes place in the process of production is submerged beneath the surface of the circulation-process of capital; each individual capitalist in his actual chrematistics hopes to gain a greater surplus value by reducing his production-costs. This satisfies at least the first part of the circulation principle of capital, the principle of „buying cheap and selling dear.“ By the same token, the time that the production-process requires is viewed by capital, not as the whole length oflabour-time required for the provision of the product, but as the production-period, i.e., as the time interval between the investment of capital in the elements of production such as labour-power and the means of production and the reappearance of capital in the form of the newly produced commodity. This production-period together with the circulation-period, or the time spent by capital in the phase of circulation, now appear as the time-factors constraining the efficiency of value-augmentation. If the elements of production such as labourpower and the means of production are considered as expenses, the duration of time itself either in production or in circulation is also viewed by capital as a cost. This means that capital, whether in the forms of money and commodities or in the various stages of the production-process, cannot stand idle even for a moment.
  2. These new considerations certainly do not nullify the formation and augmentation of value in the production-process of capital; on the contrary, they flow from this fundamental fact. Yet capital as a circulation-form, bewildered by these considerations, does not apprehend the exact nature of production as the process of value formation and augmentation. Each individual capitalist only vaguely sees that production lies at the root of his profit-making activity. Because the value of a commodity is realised in money only through the elusive motion of prices, the substance of economic life is always covered by the mystery of the commodity-economic forms. Just as a commodity value, the social norm of exchange, can only be revealed in fluctuating prices through recurrent trade, so is surplus value which is the meaningful outcome of the production-process realised only in the form of profit accruing to each individual capitalist as the difference between the selling price and the production-cost. If there is a socially normal profit, though individual capitalists always earn more or less than the norm, it is because all the particular forms of the motion of capital pursue, in the final analysis, one and the same end in the production-process, namely, the augmentation of value. No particulars of the motion of capital can suppress this fundamental fact even though it is not immediately apparent in the commodity-economy. It instead „makes a detour“ in revealing itself through the phenomenal forms that are peculiar to the circulation-process of capital. The origin of capital was first explained in the Doctrine of Circulation. Although the substantive content of the activity of capital was later established to lie in the value augmentation in its production-process, this does not exempt the motion of capital from the various restrictions to which, as a circulation-form, it is subject. The circulation-process of capital must now develop the forms appropriate to its operation.
  3. I have already stated that capital, being the self-motion of value, cannot stop when it turns over once but must repeat the same process ad infinitum. Its terminal point M‘ is, therefore, also necessarily its restarting point M in the circular motion of capital M — C … P … C‘ — M‘, as depicted below in the diagram. Viewed in this way, however, the motion of capital is no longer simply the circuit of money-capital (M — C … P … C‘ — M‘) which begins and ends with the form of money. It is also the circuit of productive capital (P … C‘ — M‘.M-C …. P) which begins and ends with a stage in the production-process, as well as the circuit of commodity-capital (C‘ -M‘ . M — C … P … C‘) which begins and ends with the form of commodity stocks. All three circuits together make up the circular motion of capital. In actual practice, indeed, capital is always divided in an appropriate proportion into the three constituents: money-capital M, productive capital P, and commodity-capital C‘, so as not to interrupt the process of production. In other words, when a major part of capital is engaged in production ( … P … ), another part of capital must be preparing for subsequent production (M — C), and still another part must already be selling products in the market (C‘ — M‘). The metamorphosis of capital through time thus translates itself into the asset structure of capital; it is an observed fact that a business firm is spatially divided into the factory, the sales office, and the purchasing department. As the routine operations of production, sales, and procurement are repeated, capital goes through each of these phases in tum and augments its value. That part of capital which takes the forms of commodities and money in the process of circulation is called circulation-capital by Marx in contrast to productive capital which is the rest of capital concurrently engaged in value formation and augmentation at various stages of the process of production. As the commodity is sold for money, and as the money once again buys commodities in the form of the means of production and labour-power, circulation-capital transforms itself into productive capital. When, however, the process of production is over and commodity stocks are built, productive capital is once again reconverted into circulation-capital. Thus the two forms of capital, one always changing into the other, are but the two sides of one and the same thing: the motion of capital.

1965, Hywel Murrell    


Man receiving and processing information
 | FOS: 5.1 Psychology
In: Murrell, Hywel (1965). Ergonomics Man in His Working Environment. London: Chapman & Hall. S.XV.

014 (1965) Hywel Murrell

Fig. 1. Man as a component in a closed loop system and factors which may affect his efficiency.



Before going into detailed consideration of the various factors relating man to his work it is necessary to understand the part played by the man himself. In any activity a man receives and processes information, and then acts upon it. The first of these, the receptor function, occurs largely through the sense organs of the eyes and the ears, but information may also be conveyed through the sense of smell, through touch, through sensations of heat or cold, or through kinaesthesia. This information is conveyed through the nervous system to the central mechanism of the brain and spinal cord, where the information is processed to arrive at a decision. This processing may involve the integration of the information being received with information which has already been stored in the brain, and decisions may vary from responses which are automatic to those which involve a high degree of reasoning or logic. Having received the information and processed it, the individual will then take action as a result of the decision and this he will do through his effector mechanism, usually involving muscular activity based on the skeletal framework of the body. Where an individual’s activity involves the operation of a piece of equipment he will often form part of a closed loop servo-system displaying many of the feedback characteristics of such a system. Moreover he will usually form that part of the system which makes decisions and it will therefore be appreciated that he has a fundamental part to play in the efficiency of the system. To achieve maximum efficiency a man-machine system must be designed as a whole, with the man being complementary to the machine and the machine being complementary to the abilities of the man. To understand how these processes function it is desirable to know something of the nervous system, of the functioning and capacity of the central mechanism, of the structure of the body, the bones and the joints, and of the muscles which provide the motive power. Additionally, something needs to be known of the source of the power which drives this mechanism, and of the limits of the output which can be expected from it. These activities are not of course carried out in vacuo. An individual may be working in an environment which is too cold, just right or too hot. He may be subjected to such extremes of heat that his mechanism for regulating the body temperature may be in danger of breaking down unless he moves to a cooler environment. He may be subjected to noise which may be of such intensity and duration that he may suffer physical impairment of hearing. He has to be in communication with others; this may take the form of drawings, of written instructions or may be verbal. If it is the latter, noise may be an interfering factor. To be able to see he must have light, which should be of a quality and quantity adequate to the needs of the job. His performance may even be affected by the colour of his surroundings. His work must be organized so that he can maintain his maximum efficiency and interest and so that his abilities are being fully utilized. His relationships with other members of his working group should be such that his efficiency is not interfered with. These factors are illustrated in Fig. I. These are the important ingredients of successful work design, and anyone who sets out to study a particular work situation should take them all into consideration.

1965, Motoyosi Sugita    


The human being may be a kind of information processing apparatus
 | FOS: 1.3 Physical sciences
In: Sugita, Motoyosi (1965). Fundamental Idea of Cybernetics - The Idea of Pure Cybernetics and of Cybernetic Sciences. In: Hitotsubashi journal of arts and sciences, 6. S.57.

052 (1965) Motoyosi Sugita

Fig. 4b Human Being



Our society may in some respect be a mechanism and indeed the mechanism of the largest scale which has ever been made by human hand. The fundamental difference from that of purely physical nature is the autonomy of its component, human being.

Cybernetics can originally include such an autonomous being like steerman (κυβερνήτης) in its system. Navigation indeed is not a natural phenomenon only depending on wind and stream but a part of the social events. Of course this autonomy is restricted but even the autonomy of a president or a premier may also be restricted when he is sailing the ocean of „history“. There are always the autonomy as well as the restriction in our life and we cannot limitlessly rely upon such an idea, autonomy, if we want to study the social mechanism scientifically. Cybernetics as itself cannot be a dynamical theory of social phenomena, as was told in I. Such a dynamical theory must belong to the proper field of social science.

Cybernetics should not have a polygami-like relation with other field of sciences. It can only warm up our mental activity and provide a new scientific point of view. Whether such a view-point is correct or not must be decided by the study of social science itself. Cybernetics cannot have any power to decide such a thing but has only the good will to suggest. This is also true to mathematics as well as to philosophy. Social science cannot be ruled by the so-called „general principles“ obtained outside of the social study.

From cybernetic point of view human being may be a kind of information processing apparatus, although its software is very specific. Fig. 4 is my own mental picture. A part of our memory like feeling or impression of the past may influence the programming of our mental tape. Another part of our memory stored in the cortex, however, has the form of abstract conception or notation and it is highly used for the information processing, just like the case of electronic computer. Our mental function of logical processing is called „understanding“. Our passion influences the processing which hampers our logical judgement.

The programming of our mental tape, which may be a special kind of memory (see Note), may also be influenced by impression, instinct and other factors of our social life, although our judgement itself must correctly be logical. Therefore, if the program tape is under the influence of prejudice or wrong impression, our judgement cannot be objectively just even in the case of logically correct processing.

Note In school education we do not test simple memory but the degree of development of the software, in which simple memory is composed in a pattern of behaviour as the result of learning.

Fig. 4 is only a „suggestion“ but such a mental picture may be plausible. Specificity of the human being may be in the programming of the software, which was cultivated in social life, especially by education at home and at school. Such an influence of social life is the general nature of primates, in which apes and monkeys are included too. Other animals are not so deeply influenced by social life. In the case of insects the behaviour is almost perfectly determined by its instinct, like a machine controlled by a program tape. In the case of vertebrate the behaviour is more flexible, because of the developed power of information processing.

Considering this, there is no fundamental difference between human being and other animals with respect to the information processing or we can say that from cybernetic point of view the difference is only a matter of degree of complexity, that is, the ability of information processing is, on the one hand, exceedingly large because of the use of abstract conception and, on the other, the program tape is flexible. However, the quantitative difference induces a qualitative one, i.e. our programming may change as the social condition changes. The social change, further, is induced autonomously by human work. Such a flexibility makes the fundamental difference of human being from other animals including apes and monkeys. Nevertheless, the human being cannot generally adapt to the change of situation so rapidly, that there is a certain time lag or delay in the modification on its software.

Therefore, there are two sides to be studied. One is the matter concerning the modification of our mental tape, and the other is the study of the social behaviour which can be understood neglecting such a modification.

1965, David Easton    


A Political System Diagram
 | FOS: 5.6 Political sciences
In: Easton, David (1965). A systems analysis of political life. New York, London, Sydney: John Wiley & Sons. S.30.

065 (1965) David Easton

Diagram 1 A Dynamic Response Model Of A Political System



It is clear from what has been said that this mode of analysis enables and indeed compels us to analyze a political system in dynamic terms. Not only do we see that it gets something done through its outputs but we are also sensitized to the fact that what it does may influence each successive stage of behavior. We appreciate the urgent need to interpret political processes as a continuous and interlinked flow of behavior.
If we apply this conceptualization in the construction of a rudimentary model of the relationship between a political system and its environment, we would have a figure of the kind illustrated in Diagram 1. Readers of A Framework for Political Analysis are already familiar with this figure but it is useful to recall its details. In effect it conveys the idea that the political system looks like a vast and perpetual conversion process. It takes in demands and support as they are shaped in the environment and produces something out of them called outputs. But it does not let our interest in the outputs terminate at this point. We are alerted to the fact that the outputs influence the supportive sentiments that the members express toward the system and the kinds of demands they put in. In this way the outputs return to haunt the system, as it were. As depicted on the diagram, all this is still at a very crude level of formulation. It will be our task to refine these relationships as we proceed in our analysis.
But let us examine the model a little more closely since in effect this volume will do little more than to flesh out the skeleton presented there. In interpreting the diagram, we begin with the fact that it shows a political system surrounded by the two classes of environments that together form its total environment. The communications of the many events that occur here are represented by the solid lines connecting the environments with the political system. The arrowheads on the lines show the direction of flow into the system. But rather than attempting to discuss each disturbance in the environment uniquely or even in selected groups or classes of types, I use as an indicator of the impact that they have on the system, the way in which they shape two special kinds of inputs into the system, demands and support. This is why the effects from the environment are shown to flow into the box labelled „inputs“. We must remember, however, that even though the desire for simplicity in presentation does not permit us to show it on the diagram, events occurring within a system may also have some share in influencing the nature of the inputs.
As is apparent, the inputs provide what we may call the raw materials on which the system acts so as to produce something we are calling outputs. The way in which this is done will be described as a massive conversion process cavalierly represented on the diagram by the serpentine line within the political system. The conversion processes move toward the authorities since it is toward them that the demands are initially directed. As we shall see, demands spark the basic activities of a political system. By virtue of their status in all systems, authorities have special responsibilities for converting demands into outputs.

1965, David Easton    


Demand Flow Patterns
 | FOS: 5.6 Political sciences
In: Easton, David (1965). A systems analysis of political life. New York, London, Sydney: John Wiley & Sons. S.74.

067 (1965) David Easton

Diagram 3 Types Of Demand Flow Patterns



To help in understanding the processes at work and their related variable structures, Diagram 3 depicts the logical alternatives with regard to flow patterns of demands in any system, regardless of type, time and place. Of necessity, the diagram presents a crude and highly oversimplified approximation of the possible paths taken by demands as they move through the system. Nevertheless, using it as a point of departure, the box stands for the political system; and outside it is the total environment, intra-societal and extra-societal. In the environ­ment, the general, nonpolitical opinions, preferences, interests, ideolo­gies and similar ideas and attitudes, what we shall be calling wants, are formed. As members of society express these wants in the form of expectations or desires that binding decisions should be taken with respect to them, they are by definition converted into demands and have become part of the political processes of that society. The conver­sion of wants takes place at the boundary and is identified by the shaded arrows.

Inside the box the various solid arrow lines represent pathways or channels along which demands are borne as they move from their first emergence on the scene to their crystallization, in whole part or part, into binding decisions and implementing actions. But by virtue of their flow through the network of channels, demands undergo a number of preparatory or pre-processing phases through which they become modified in content or reduced in numbers. As a result of these processes each persisting system is able to guarantee that by the time the de­mands reach the areas where binding decisions are made and imple­mented, there is a reasonable chance that those who are responsible for these final stages will be able to cope with what might otherwise have been an overwhelming welter of time-consuming.demands. The diagram traces five logically possible channels along which a want may travel after it has been converted to a demand. These flow paths are labeled S to W. Although they are derived logically, it also turns out that phenomenally all these patterns appear, if not together in the same system, at least individually or in various combinations in one or another system. Through them the inflow and processing of demands are regulated.

1965, David Easton    


The Systemic Feedback Loop
99 | FOS: 5.6 Political Science
In: Easton, David (1965). A systems analysis of political life. New York, London, Sydney: John Wiley & Sons. S.378.

099 (1965) David Easton

Diagram 6 The systemic feedback loop



Unity Out of Multiplicity

This cursory survey of easily differentiable loops serves two purposes. It introduces us to a sample, if only a small one, of the variety of loops. An exhaustive analysis would however ensnare us in a veritable morass of feedback loops. Out of them, some selection would have to be made if any coherent understanding of the part played by feedback was to be achieved. Criteria of selection that enable us to set most loops aside will be introduced in a moment.

Furthermore, and incidentally, this sampling of loops opens the first door to an appreciation of the contributions of feedback processes to the dynamics of a system as a whole. Through the interlocking chain of feedback loops, all of the participating members in any one loop may be coupled, if only loosely, with many other members in the system. To point this up, I have deliberately selected the participants in the various feedback diads so that an unbroken line could be drawn through the six different actors who make up the six pairs in the six different loops. If we look at each loop as a link in a continuous chain — which they indeed form pictorially and literally — we can appreciate that the interaction around any one feedback loop has the potential, if it is strong enough, to pass its influence down the chain to other units in the system.

At this preliminary stage in a theory of political systems, when we are still trying to get our general bearings, a detailed analysis of this kind cannot and need not be undertaken. It would add confusion where clarity and simplicity are desperately needed. Rather, I shall focus attention only on the systemic feedback processes, those that link the outputs of the political system considered as a unit of analysis to the inputs of support and demands and in that way back again to the initial producers of the outputs, the authorities. Insofar as intrasystem or boundary-spanning feedback loops contribute to or in some way take part in systemic loops, I shall take them into account. But in that case, they will be considered not as components of other feedback loops but rather solely as unanalyzed components of the major networks. Whatever assumptions we make about their behavior may be due to their nature as part of subsidiary feedback structures. But as long as we can make reasonable assumptions about the way they will behave, for purposes of macroanalysis we do not need to push any more deeply.

Finally, even for purposes of exploring the systemic loop, we cannot risk the excessive complexity that would be involved, when trying to work out the main lines of analysis, if we forced ourselves to take into account each differentiated feedback loop in which a member of the authorities, as producers of outputs, might participate. The diagram indicates that the units producing outputs may be the point of origin of an infinite number of different feedback currents. Each administrator, legislator, or executive may produce outputs and may be perceived as doing so by an equal number of differentiated members of the system. The numbers involved here in a modern mass society might defy even modern computer technology. Fortunately, at no level of analysis would it be necessary to take into account separately each feedback loop. Averaging would prove possible.

But again, for our purposes, even this would be too refined. For the multiple producers of outputs and inputs, unless the context clearly requires otherwise, I shall at least begin as though the producers of outputs, the authorities, constituted a single, internally undifferentiated output unit that produced all outputs. Similarly, the numerous producers of inputs will be conceived as a single entity. This returns us to the simplicity of the earlier diagrams of a political system, but this time with the flow of support particularly in mind. The systemic feedback loop, when expanded, can therefore now be represented as on Diagram 6.

1966, Gordon Pask    


An ultrastable or an hierarchically organised and goal directed adaptive control mechanism
 | FOS: 5.3 Educational sciences
In: Pask, Gordon (1966). Comments on the cybernetics of ethical, sociological and psychological systems. In: Wiener, Norbert & Schadé, J. P. (Hrsgg.)(1966). Progress in Biocybernetics. Vol. 3. Amsterdam, London, New York: Elsevier. S.163.

027 (1966) Gordon Pask

Fig. 1.



1.2.2. The M model is a canonical form of representation with two salient features. The first of these is an „hierarchy of formal metalanguages“ or „a stratified linguistic structure“ in which we embed descriptions of concepts and cultural constraints and intelligent communication. Now organisms do not actually use formal languages. They communicate in terms of open and referentially mixed languages. But a description of their activity in these terms is ambiguous. So the hierarchy of meta languages is introduced to avoid this ambiguity and (as in 2.2.4) to achieve a unified and simple image of the mechanism that is responsible for the communication process.

Next, the M model has two components, namely a mechanistic and a descriptive component. When the M model is experimentally identified (when it acts as an M system) these components are associated with incompletely comparable sequences of observations that (as in 2.1.4.) refer to distinct ontological classes. However, as the model is abstracted from reality the calibre of the distinction changes. When the M system is identified with a computer programme, for example, the mechanical component becomes the intensive definition of part of a formal language or, as Gorn (1962) points out, of the data processing devices that act upon it. The descriptive component becomes the extensive definition of this language. (This interpretation is pursued in 2.1.6.). At the most abstract possible level the distinction between these components is simply a distinction between the intension and the extension of relevant terms in the linguistic structure (this is the calibre of the distinction in an M model, devoid of an identification).

No attempt is made to particularise the M model but a few special cases (chiefly of learning models) have been worked out and described in the literature. Nor does this paper contain any mathematics though the bones of suitable kinds of calculus have been described by Watanabe (1962), Martin (1963) and others. The chief objective of the present discussion is to exhibit the canonical representation ‚M Model‘, to examine its identification with matters of fact in ‚M Systems‘ and to demonstrate that although more elaborate structures may be needed to describe individual ‚learning‘ and ‚mentation‘ no lesser construct would be sufficient.

2.1. Basic models

2.1.1. One of the broadest concepts shared between Cybernetics and Control Engineering is the idea of an ultrastable or an hierarchically organised and goal directed adaptive control mechanism (Ross Ashby, 1960; Pask, 1963e). To avoid unnecessary symbolism it will be convenient to adopt the graphical convention in Fig. 1 where adaptation is brought about by changes in the parametric coupling between the levels in the hierarchy. These changes are designed to satisfy a dispositional relation, F, named as a goal F. Thus Fig. 1 represents a single level adaptive control mechanism, that interacts with its environment to bring about some condition (normally a dynamic equilibrium or stationary state) that is characterised by an invariant called F.

1966, Karl Steinbuch    


Informationsbank
 | FOS: 1.3 Physical sciences
In: Steinbuch, Karl (1968). Die informierte Gesellschaft. Geschichte und Zukunft der Nachrichtentechnik. Stuttgart: Deutsche Verlags-Anstalt. S.208.

062 (1968) Karl Steinbuch

Bild 81: Hypothetische Informationsbank. An diese Informationsbank soll von vielen nahen und fernen Quellen Information geliefert werden, damit sie an nahe und ferne Empfänger möglichst jede beliebige Information liefern kann



Bild 81 zeigt schematisch eine hypothetische «Informationsbank». Mit diesem Terminus soll ein Spezialcomputer bezeichnet werden, welcher für Information etwa dasselbe leistet wie eine normale Bank für Geld, das heißt, an diese Informationsbank soll von vielen nahen und fernen Quellen Information geliefert werden und sie soll an nahe und ferne Empfänger möglichst jede beliebige Information liefern. Der besondere Nutzen einer solchen Informationsbank liegt in der Präsenz der Information, sie «weiß» die neuesten Nachrichten und beantwortet Fragen in Sekundenschnelle. Welchen Nutzen könnten die Regierung, der Bundestag, die Parteien, große und kleine Betriebe, Forschungsinstitute, Privatleute, kurzum die ganze Gesellschaft aus der Existenz einer solchen Informationsbank ziehen!

Eine solche Informationsbank könnte wissenschaftliche und technische Fragen ebenso rasch beantworten wie Fragen nach geschichtlichen Daten und aktuellem Geschehen. Sie könnte beispielsweise in Sekundenschnelle berechnen, wie viele Lehrer im Jahre 1975 voraussichtlich fehlen werden und in welchem Umfang dieser Mangel durch die Anwendung des programmierten Unterrichts und der Lehrmaschinen behoben werden kann.

1966, Stafford Beer    


Controlling Enterprises
 | FOS: 5.1 Psychology | 6.3 Philosophy
In: Beer, Stafford (1966 / 1971). Decision And Control. The meaning of Operational Research and Management Cybernetics. London, New York. Sydney, Toronto: John Wiley & Sons. S.392.

080 (1966) Stafford Beer

Figure 48.



A vantage point has now been attained from which it is possible to discuss a general theory about the control of enterprises. In this section, it will be necessary to draw deeply on the material of Part III — of which this story is the climax. Inevitably, an account of how enterprises are to be controlled is an extraordinarily complex business. This is the reason why Figure 48, which reduces the matter to its absolute essentials, is none the less complicated and difficult to study. However, if all that has gone before has been well comprehended, the task is not insupportable.

As usual, the study begins with a (or in this case, rather, the) world situation. For the enterprise, this world situation may be understood in the form of two fairly well contra-distinguished aspects. The first is the internal world situation, which is the one that the enterprise is; the second is the external world of the enterprise environment: that part of nature which has a direct bearing on the internal state. As has been recognized before, these two systems are not absolutely separable; they do not have absolutely clear-cut boundaries. One of the reasons for the problem of separability is that each is influenced by a set of coenetic variables to be found in the world at large. All this is illustrated at the top of the diagram, where it will be seen that a set of preferred states is marked off (as a circle) from the totality of states represented by the phase space. In these two small pictures, as in those others which follow, the present state is ?hown within a preferred set of states. To go back to the drawing: the input from the set of coenetic variables is shown helping to determine this happy state of affairs. Each of these world situations may be observed to be amplifying variety. This plethora of information is seen cascading from the side of each picture. As we know, the first problem of control is to become aware of this variety, and in each case data is shown cascading on to the lid of a black box. But before attending to its subsequent use, it will be noted that the internal and the external world situations are depicted as interacting through a self-vetoing homeostat (H1). This is no more than a formalization of the actual state of affairs, for whatever the manage­ment does or fails to do about controlling the situation, it will in some sense control itself through the interactions which its two halves neces­sarily have. Management, however, will wish to influence this interim interaction for motives of its own, and the model now continues by saying what is to happen.

1967, Walter Buckley    


Social feedback system
 | FOS: 5.3 Sociology
In: Buckley, Walter F. (1967). Sociology and Modern Systems Theory. Englewood Hills, New Jersey: Prentice-Hall. S.173.

042 (1967) Walter Buckley

Figure 6-2



One of the more successful aspects of modern systems research is the field of cybernetics, and more specifically the concept of the feedback loop as a basic mechanism underlying system regulation and control. We wish to discuss briefly in this Section the possibilities of borrowing this latter principle as the basis of a model of societal or organizational goal-seeking, where the goals or purposes are explicit, conscious, and intentional.

A social feedback model has been suggested occasionally since the mid-forties by a few social scientists, though it was not developed at any length until recently in the works, for example, of Geoffrey Vickers, Karl Deutsch, and David Easton. Thus, Kurt, Lewin, in a 1947 article, treats of „Feedback Problems of Social Diagnosis and Action.“ Planned social action, he suggests, usually emerges from a more or less vague idea that develops into a „plan“ when the objective has been clarified, the goal-path and available means have been determined, and a strategy of action worked out. Recognizing that this plan, or „blueprint for action,“ should be kept flexible and subject to modification as the action is carried out, he then makes reference to the self-steering missiles and other armaments developed during the war, and carries the underlying feedback principle over to the social sphere. After pointing out the important assumption underlying such steering, namely, that fact-finding methods have been found that permit a close enough determination of the nature and position of the social goal, as well as the direction and amount of „locomotion“ brought about by a given action, he goes on to say:

To be effective, this fact-finding has to be linked with the action organization itself: it has to be part of a feedback system which links a reconnaissance branch of the organization with the branches which do the action. The feedback has to be done so that a discrepancy between the desired and the actual direction leads „automatically“ to a correction of actions or to a change of planning.

In the general cybernetic model of the error-regulating feedback system, we may distinguish — though more or less arbitrarily — five stages
(See Figure 6-2)

1) A control center establishes certain desired goal parameters and the means by which they may be attained; 2) these goal decisions are transformed by administrative bodies into action outputs, which result in certain effects on the state of the system and its environment; 3) information about these effects are recorded and fed back to the control center; 4) the latter tests this new state of the system against the desired goal parameters to measure the error or deviation of the initial output response; 5) if the error leaves the system outside the limits set by the goal parameters, corrective output action is taken by the control center.

This kind of model calls for a great deal of caution by the user, for while it may serve to illuminate the systemic nature and complexities of societal or organizational goal-seeking, any attempts at concrete application warn us against the hope of an easy breakthrough. Put in another way, such a model seems valid as a generalized picture of what tends to occur in group goal-seeking, or what would (or perhaps should) occur were it not for „complicating factors“; but these complicating factors are just what prevents the analyst from any easy use of the model.

1967, Walter F. Buckley    


Collective Behavior
 | FOS: 5.3 Sociology
In: Buckley, Walter F. (1967). Sociology and Modern Systems Theory. Englewood Hills, New Jersey: Prentice-Hall. S.138.

049 (1967) Walter F. Buckley

FIGURE 5-1 Simplified Systemic View of the "Collective Behavior" Approach to a Theory of Institutionalization



The „collective behavior“ approach to the problem of institutionalization has recognized that many of the characteristic features of the major institutions of modern Western society — economic, political, religious — have their origins in, and are partly maintained and rejuvenated by, relatively unstructured collective processes. This perspective views the generation of institutional structure in terms of a natural history, which starts from a situation of „social unrest“ and a tendency toward breakdown or rejection of existing tradition and institutional controls, and proceeds through various forms of spontaneous collective behaviors (crowd or mob actions, public discussion, and opinion formation) to more organized forms of collective decision-making and action (social movements, political party formation, or revolution), culminating in some cases in the institutionalization of a new order. There is no implication, however, of unilateral sequences or necessary stages.

Such an orientation, developed particularly by social interactionists, complements the structuralist approach particularly by attempting to fill in the social-psychological dynamics. Central concern is given to the processes whereby, in minimally structured — usually stressful — situations, new perspectives, definitions, symbols, norms and values are collectively generated in a more or less spontaneous, though not random, manner. On the other hand, as a theory of institutionalization, it does not deal with the more deliberate, „rational,“ socially structured, and less directly disruptive processes of institutional elaboration. Consider for example, the qualitative changes in modern economic and political institutions which are the cumulative results of the largely uncoordinated, often unlegitimized, plans of action of the constituent organizations. An integration of both structural and collective decision analysis, such as that found in some of the recent work in complex organization theory, is needed to tap this area.

What is required, in particular, is to make more explicit the recognition that institutionalization is an ongoing, circular, systemic process, and not an open-ended chain of events with clear-cut antecedents and consequences. From a systems view, we might see it as a feedback, or pseudo-feedback, process that contains both negative (stabilizing or rigidifying) elements and positive (structure-elaborating, or increasingly disorganizing) features. (See Figure 5-1) As some of the newer views are beginning to suggest, such closure is essential for a fully dynamic model of the sociocultural system. In one way or another, the point is being made that institutional structures help to create and recreate themselves in an ongoing developmental process. The modern systems perspective is providing conceptual tools that are taking the mysticism out of the notions of „immanent change“ and the harboring of „seeds“ of an institution’s own destruction — or construction. Whether directly inspired by the modern perspective or not, current theory is moving in similar or compatible directions.

1967, John Cunningham Lilly    


Effects of LSD on the Human Biocomputer
 | FOS: 3.5 Other medical sciences
In: Lilly, John C. (1967 / 1974). The Human Biocomputer · Theory and Experiments. London: Abacus. S.120.

064 (1967) John Cunningham Lilly

Figure 9 Primary State Induced by Hipnosis, LSD, Etc.



Methatheoretical considerations

In general there are two opposing and different schools of thought on the basic origins of systems of thought or systems of mathematics. In a simplified way these two extreme positions can be summarized as follows:

1. In the first position one makes the metatheoretical assumption that a given system of thinking is based upon irreducible postulates — the basic beliefs of the systems. All consequences and all manipulations of the thinking machine are then merely elaborations of, combinations of, these assumptions operating upon data derived from the mind and / or from the external world. This is called the formalistic school. This school assumes that one can, with sufficiently sophisticated methods, find those postulates which are motivating and directing a given mind in its operations. A further metatheoretical assumption is that once one finds this set of postulates that then one can account for all of the operations of that mind. (Whitehead and Russell, 1927; Carnap, 194246; Tarski, 1946.)
2. The opposing school at the opposite end of a spectrum of schools, as it were, makes the metatheoretical assumption that thinking systems arise from intuitive, essentially unknowable, substrates of mental operations (Hilbert, 1950). This school states that new kinds of thinking are created from unknown sources. Further, one is not able to arrive at all of the basic assumptions on which systems of thinking operate. Many of the assumptions from this point of view must be forever hidden from the thinker. Thus in this view the origins of thinking are wide open. With this metatheoretical assumption one can then conceive of the existence in the future of presently inconceivable systems of thought.
3. There is an intermediate position between these two extremes in which one assumes the existence of both kinds and that each of these two extremes has something to offer. Thus one can select kinds of thinking which are subject to formalistic analysis and formalistic synthesis based upon basic beliefs. But this does not include all thinking. Some kinds continue to be based in unknown areas, sources, and methods. Metatheoretical selection is being done by selection of the formal kind of thinking from a large universe of other possibilities. This position does not state that the origins of the basic beliefs are completely specifiable. However, once some related basic beliefs are found to exist, a limited system of rules of combination of the basic beliefs giving internally consistent logical results can be devised for limited use of that system. This organization into a limited integral system of thinking and the selection of those basic beliefs which naturally fit into such systems of thinking, is a way of dividing off this territory.

Basic Effects of LSD25 on the Biocomputer

Growth-Hypothesis

1. One major biological effect of LSD25 may be a selective effect on growth patterns in the CNS. Some parts of the local growth patterns, i.e., the systems which are selectively active during the LSD25 state.
2. For these postulated growth effects there is an optimal concentration of the substance in the brain. With less concentration than the optimal there is merely an irritating stimulation of the CNS (below the levels of awareness). At the optimal concentration (in the nontolerant state) the phenomena of the LSD25 state occur. This is a phase of initiation of new growth in the CNS. [This phase is a state of mind analogous to that presumed to exist in the very young human (possibly beginning in the fetus or embryo).]
3. If additional material is administered, prolongation of this phase can be achieved within certain limits. With the maintenance of the optimal concentration of substance, this phase is prolonged (hours) until tolerance develops.
4. The phase of developed tolerance is thought to be (in addition to other things) the phase of the completion of the fast new growth. Most of the new biochemical and neurological connections are completed.
5. If continuous maintenance of optimal concentration for many hours (and ? days) after this initial phase is then achieved, growth may continue slowly.
6. The growth is not thought to be confined to the central nervous system. The autonomic nervous system may grow also.
7. If the optimal concentration is exceeded, the substance excites a „stress syndrome“ (i.e., adrenal-vascular-G.l. tract, etc.). (This syndrome is separate from the affective results of the LSD25 state which in certain individuals can cause a stress syndrome. I am not speaking of such individuals. I am speaking of more sophisticated observers who have been through the necessary and sufficient experiences to be able avoid a stress syndrome in the LSD25 state.)
8. At concentrations above the optimal there can be a reversal of the beneficial effects in the induced stress syndrome. Antigrowth factors are stimulated. Homeostasis is thus assured in the organism. A similar phenomenon can be seen with negative programming during the LSD25 experience. Reversal of growth may be programmed in by the selfprogrammer, unconscious metaprograms, or by the outside therapist or other persons.
9. At concentrations above optimal the resulting stress syndrome is programmed into the autonomic nervous system and continues (beyond the time of the presence of the substance) to repeat itself until reprogrammed out days or weeks later.
10. At levels above optimal, the selfmetaprogram loses energy and circuitry to autonomous programs; the ego disappears at very high levels.

This complex series of relations shows the delicate nature of the best state for remetaprogramming and of remetaprogramming itself. Until sophisticated handling (of these substances, the selfmetaprogram, the person, the setting, the preparation, etc.) can be achieved, careful voluntary education of professional personnel should be done, and done carefully with insight. Selection of persons for training must be diplomatic and tactful; it is a strategy to be carried out cooperatively without publicity. Candor and honesty at deep levels is a prime requisite.

1967, Erich Jantsch    


Techniques in perspective
 | FOS: 1.5 Earth and related environmental sciences
In: Jantsch, Erich (1967). Technological Forecasting in Perspective. Paris: OECD Publications. S.118.

086 (1967) Erich Jantsch

- -



Feedback techniques may ultimately be constructed out of the elements of exploratory and normative forecasting, or will be based on newly developed elements. In principle, it would not seem feasible on the basis of today’s techniques to combine them to form a fully-integrated feedback system covering al levels and directions of techmology transfer. What do seem feasible today, however, are multi-level feedback systems on the basis of a „man-technique dialogue“, and partial feedback systems covering only two or three levels or certain directions of technology transfer.
Feedback systems are a natural consequence of the same conditions that have brought normative forecasting to the forefront. It may be assumed that considerable effort will be devoted to their development and perfection once decision-making techniques have been adopted in areas of broad national and social concern.
„By-pass“ techniques, with the exception of intuitive thinking, have not generally been explored up to the present time (although a few qualitative techniques, such as historical analogy, seek to establish direct forecasting relationships between non-adjacent levels). Their feasibility must still be regarded is uncertain. The basic aim of „by-pass“ techniques is to make it possible to start from one technology transfer level and obtain „random access“ to any other level. An urgent need for such techniques seems to exist primarily in the normative direction. In integrated normative forecasts that range from the highest to the lowest levels of technology transfer, there is an inevitable — and apparently substantial — loss of information. (This would be a problem amenable to exploration by information theory.) In addition, certain significant aspects and values seem to escape ordering by hierachic principles.
It would be of the greatest significance if reliable techniques could be developed that permitted, for example, the derivation of the necessary tasks for fundamental research and fundamental technological development directly from social goals, national objectives, high-level missions, etc. […] Such „by-pass“ procedures would be even of much greater importance if alternative sets of anticipated goals — not only the goals valid at present — were taken into account in future schemes […]. Intuitive thinking on the basis of the „Delphi“ technique […] already seems to be yielding a few preliminary results in this direction by formulating futura desirata in the form of functional technological capability.

1967, Heinz von Foerster    


A schematic of the canon of perception and cognition
 | FOS: 1.3 Physical sciences
In: Foerster, Heinz von (1967). Biological principles of information storage and retrieval. In: Kent, Allen, Taulbee, Orrin E. et.al. (Hrsgg.)(1967). Electronic Handling of Information: Testing and Evaluation. London: Academic Press. S.123–147.

100 (1967) Heinz von Foerster

Figure 2 Canon of perception and cognition



If I am now asked to construct an information retrieval system or, if you wish, a „brain“ capable of similar, or even more complicated stunts, I would rather think in terms of a small and compact computing device instead of considering tabulation methods which tend to get out of hand quickly.

It has lately become increasingly clear that evolution, in which an ever so slight advantage is immediately associated with a considerable pay-off in survival value, has gone exactly the way I just suggested, trading cumbersome accumulation of isolated operational entities for structural sophistication. Homeostasis is a typical case in question. However, since our topic in this conference is information storage and retrieval, let me give you a very brief account on some of the basic principles that, we believe, govern all processing of information in biological systems.

The usual difficulty encountered, not only in describing, but also in comprehending these principles is that it involves the appreciation of two kinds of mapping. One that allows for an internal representation of environmental features. These are represented in the structure and function of the information processing apparatus, in principle the central nervous system. The other kind of mapping concerns a representation of these internally mapped features in the form of messages composed of symbols that are remappable into the internal representations of a partner who participates in a symbolic discourse. Let me illuminate this situation with two illustrations.

Figure 2 is a schematic of the canon of perception and cognition. Since our universe is not Chaos, that is that anything can happen that could logically happen, but Cosmos where only certain things can happen according to the „Laws of Nature“ that are so beautifully, but naively, presented in textbooks of physics, chemistry, etc., „cosmic constraints“ must prohibit these pages you hold in your hands to turn suddenly into big, pink elephants that fly out through your window. These constraints manifest themselves in spatio-temporal structures, the „features“ of our environment (upper box in Figure 2). However, an organism looking at this environment cannot see the constraints. He only gets information about the environmental structures via his sensory apparatus. But since he has to make inductive inferences of what his environment will be later on, or beyond what he immediately perceives, this information is completely worthless unless — and here is the important point — he can compute the constraints that produced these structures. Hence, he shoves this information to his brain and lets it figure out the constraints. These, in turn are tested in the environment and new structural information is perceived. The terminology in this closed information loop is „perception“ for reception of structural information, and „cognition“ for this computation of constraints. I shall in a moment discuss a simple example of structure and function of a constraint computer that maps the environmental feature „containing discernible things“ into the corresponding internal representation.

1968, Stanley Young    


The total system
 | FOS: 5.2 Economics and business
In: Young, Stanley (1968). Organization as a Total System · A systems engineering approach for the design of an organization is conducive to the full utilization of new managerial technologies. Berkeley, Cal: California Management Review 1968.10. S.23.

012 (1968) Stanley Young

FIG. 2.—Organization with Control Unit



The general management or organization theorist’s domain is the whole. One is concerned with the problem of organization space or the distance between subfunctions, subprocesses, tools, and techniques-the interface problems. To those who are concerned with the whole, the partial approach of the new technology is disconcerting. Where and how do all these parts fit together, and what is the relationship between one and another? Sprinkling behavioral and quantitative courses about a business curriculum is of questionable effectiveness. Therefore, as far as the newer technologies are concerned, a gestalt, or general, model has been missing which will integrate all the parts meaningfully. What is being suggested is that the systems approach will provide this model.

Another problem which has emerged, which requires that the organization be designed as a total system, is that all too frequently the organizational context into which the newer technologies are inserted tend to be inappropriate. We are attaching sophisticated techniques to a primitive vehicle — the bureaucratic structure. Organizations should be designed around the technology; technology should not be forced to fit an existing structure.

In Figure 2, the control or feedback mechanism is added to the organization, which is represented by management. Or, in terms of control theory, the management segment constitutes the basic control element of the organization. Thus, given a certain welfare objective or expected welfare output (a profit increment), actual welfare is measured against expected welfare. If a difference exists, then a problem is indicated. This information is sent to the management segment which formulates a solution that is then input into the organization process. This feedback device will operate until the actual and expected welfares are approximately equal.

1968, Helmar Frank    


Grundlagen der „Lernmaschine“
 | FOS: 1.1 Mathematics
In: Frank, Helmar (1968). Wissenschaftstheoretische und organisationskybernetische Aspekte der kybernetischen Pädagogik. Evangelische Theologie, Vol. 28 (Issue 7). S.379.

057 (1968) Helmar Frank

1 Schema des didaktischen Informationsumsatzes und seiner Einbettung in den sozialkulturellen Rahmen



Es wurde schon erwähnt, daß in einem Teil dieser pädagogischen Variablen Information über die anderen steckt. Genauer: Sind einige pädagogische Variablen festgelegt, dann können die anderen nicht mehr ganz beliebig festgelegt werden. Nicht jede Festlegung von L, M, P, S, Ζ und Λ ist also eine Beschreibung einer möglichen Lehrsituation. Insbesondere kann gefragt werden, welche Lehralgorithmen einen gegebenen Lehrstoff mit einem gegebenen Medium einem gegebenen Adressaten in einer gegebenen soziokulturellen Umwelt mit einer geforderten Gründlichkeit zu vermitteln gestatten. Die Gesamtheit der Fragestellungen, Begriffe und Methoden, die entstehen, eingeführt und angewandt werden, wenn ein Teil der pädagogischen Variablen festgelegt ist und eine damit verträgliche Festlegung der übrigen gesucht wird, nennen wir Didaktik. Der didaktische Prozeß ist also die Vorbereitung des Lehrprozesses. Beide zusammen bilden den Begriff des didaktischen Informationsumsatzes. — Ausdrücklich sei darauf hingewiesen, daß unter den sechs Komponenten des didaktischen Informationsumsatzes im allgemeinen nicht , wie in Paul Heimanns (1962) Didaktik des Grundschulunterrichts, den Variablen S und Ρ eine Sonderstellung zukommt, insofern diese sich etwa einer Entscheidung entzögen und grundsätzlich als Bedingungen der Entscheidung über die anderen Variablen berücksichtigt werden müßten. Das gilt außerhalb der Grundschuldidaktik nahezu nirgends, insbesondere nicht in der Industriedidaktik. Hier sind Soziostruktur und Psychostruktur nicht unveränderlich vorgegeben: ein Managementtraining kann in ein entlegenes Bergdorf verlagert, und zum Kurs nur freigestellt werden, wer die erforderliche Lernfähigkeit und Vorkenntnis mitbringt. Keineswegs ist also die moderne Industriepädagogik vorrangig am Menschen und seiner Umwelt orientiert; beide sind vielmehr beliebig auswechselbar, soweit dadurch ein für das Unternehmen günstiger didaktischer Informationsumsatz erreicht werden kann.
Es kann jedoch für die Gesamtgesellschaft (oder auch schon für ein Einzelunternehmen) Gründe geben, manchmal eine in bestimmter Richtung erfolgende Veränderung des Lernzustandes aller Glieder der Gesellschaft zu fordern und nicht nur der Ausbildung neu benötigter Spezialisten jeweils eine Vorsortierung passender Adressaten vorauszuschicken. Der didaktische Informationsumsatz wird nämlich vom umgreifenden soziotechnischen System an drei Stellen beeinflußt:

Die Normen und Verhaltensformen der Gesellschaft (des soziotechnischen Systems) bedingen

a) die Variable Ζ und
b) die Variable S; außerdem ist
c) die Variable L vom jeweiligen Stand von Kunst, Wissenschaft und Technik abhängig.

Diese Randbedingungen sind aber nicht unveränderlich sondern ihrerseits eine Folge der in der Vergangenheit erfolgten oder unterlassenen pädagogischen Einwirkungen auf die Gesamtheit der Adressaten (sowie eine Folge der unmittelbaren Einflüsse der Pädagogen). Bild 1 faßt die bisherigen Überlegungen für den Fall einer didaktischen Instanz zusammen, die Λ zur einzigen abhängigen Veränderlichen macht. An diesem Bilde orientieren wir uns, wenn wir nunmehr einen systematischen Aufbau der Pädagogik als „Wissenschaft in ihrem idealen Endzustand“ entwerfen.

1969, Nicolas Schöffer    


Die kybernetische Stadt
 | FOS: 6.4 Art (arts, history of arts, performing arts, music)
In: Schöffer, Nicolas (1969 / 1970). Die kybernetische Stadt. München: Heinz Moos Verlag. S.103.

050 (1969) Nicolas Schöffer

Theoretisches Funktionsschema des kybernetischen Lichtturms



Das Funktionsschema des Turms ist das gleiche wie das jedes anderen Regelsystems.

In der phänomenologischen Gesamtheit unserer Gesellschaft, die sich gegenwärtig in beschleunigter Akzeleration befindet, gestaltet die Erkenntnis ihrer Funktionsweise, die tendenziell von der Anarchie zur kontrollierten Organisation und zu regulierten Systemen übergeht, Systeme einzuführen, die zum Bild ihrer Entwicklung beitragen und die offene und veränderbare Progression der dynamischen und zufälligen Strukturen dieser Gesellschaft für die Zukunft entwerfen und vorantreiben. Der Lichtturm wird eine phänomenologische Ganzheit kleinen Ausmaßes (aber komplexer Natur) sein und der Konkretisierung eines Informationszubringer-Systems dienen, welches die Entwicklung seiner Umgebung reflektieren und sie zugleich regulieren wird, teilweise durch die Effekte der Kunst, die in die umgebenden Informations-, Wahrnehmungs- und Aktionskreisläufe eingeschleust werden. Hierbei handelt es sich um eine permanente und schwankende wechselseitige Beeinflussung. Ihre rhythmischen, ständig veränderten und veränderbaren Beziehungen werden ein vertieftes Studium der menschlichen und sozialen Verhaltensweisen erlauben. Auch der Turm und sein Funktionssystem werden in wachsender Zahl Informationen liefern, weshalb man ihn gleichzeitig als Experimentier-Labor betrachten kann, wo verschiedene besonders aktuelle Probleme ständig behandelt werden können. Diese Probleme betreffen die Wechselwirkung von Kunst und Gesellschaft, Kunst und Wissenschaft, Kunst und Urbanisierung, Kunst und Entwicklung der Zukunft im allgemeinen; sie können mehr oder weniger unmittelbare Interferenzerscheinungen in dem Funktionssystem hervorrufen. So können wir dieses Laboratorium als Erzeuger von funktionalen Perturbationen betrachten, die neben den zufälligen Perturbationen und neben der Indifferenzzelle in die Regulierung des Systems eingreifen werden.

1970, Michael Conrad   Howard Hunt Pattee


Flow of control in evolution program
 | FOS: 1.7 Other natural sciences
In: Conrad, Michael & Pattee, Howard H. (1970). Evolution experiments with an artificial ecosystem. Journal of Theoretical Biology, Vol. 28/3. S.399.

008 (1970) Michael Conrad, Howard Hunt Pattee

FIG. 1. Flow of control in evolution program. The diagram is highly simplified. A new period is initiated when BIOTA is re-entered after ENVIRONMENT is executed. The second pass begins with MARK.



Each organism is attached to some place in the world. It should be emphasized that the organism is not located only at this place, and the place does not correspond to an ecological niche. (Certainly such niches must not be artificially imposed by the programming.) Rather, the organism is allowed to operate over a certain number of contiguous places (its territory), but is associated with the place of attachment for certain of its activities and at the end of every period or cycle of the program.

The temporal organization of the model is not in real physical time since events occur at discrete periods. The periods are not generation times, and the lifetime of an organism can extend over any number of these periods. However, the consequences of an organism’s behavior must depend on the behavior of other organisms — that is, it must appear as if organisms are functioning simultaneously. This is achieved, inside the computer, by using the device of a two-pass system, allowing interaction among processes arbitrarily separated by the sequential operations of the computer. In the first pass organisms interact with the environment and with other organisms in local sequence time. The consequences of an organism’s behavior in what corresponds to global, physical time are determined during the second pass. Here chips are collected, organisms reproduce, and chips from decaying organisms (detritus chips) are returned to the matter pool. The net effect of birth and decay determine the composition of the new biota, and the process is repeated. In the actual program the second pass consists of a number of subpasses. The overall flow of information in the program is illustrated in Fig. 1.

The organisms have a genome and a phenome. The genome is mapped into the phenome according to a doublet code. This mapping is not designed to represent the known processes of protein synthesis, or embody any particular logic of self-reproduction. However the genotype-phenotype distinction serves as a basis for efficiently describing various representative strategies of construction and interaction, which is the same function it performs in real cells.

1970, Mihajlo D. Mesarović   Yasuhiko Takahara


Multilevel systems
 | FOS: 2.2 Electrical engineering
In: Mesarović, Mihajlo D./ Macko, D./ Takahara Yasuhiko (1970). Theory of hierarchical, multilevel, systems. New York, London, Paris: Academic Press. S.35.

016 (1970) Mihajlo Mesarović

FIG. 2.1 . Vertical interaction between levels of a hierarchy.



The concept of a multilevel, hierarchical structure cannot be defined by a short succinct statement. A glance through the cases presented in Chap. I can convince one that an all-embracing definition would amount to enumeration of possible alternatives. We therefore answer the question by pointing out some of the essential characteristics which every hierarchy has, in particular: vertical arrangement of subsystems which comprise the overall system, priority of action or right of intervention of the higher level subsystems, and dependence of the higher level subsystems upon actual performance of the lower levels.

Vertical Arrangement

Any hierarchy one considers contains a vertical arrangement of subsystems, in that the overall system is viewed as consisting of a family of interacting subsystems as shown in Fig. 2.1. By the term „system“ or „subsystem“ we simply mean a transformation of the input data into outputs; the transformation can be either dynamic evolving in actual time, an „on-line system“, or it can be a problem-solving procedure, in which case the decomposition is conceptual, in that each block represents an operation to be performed, not necessarily simultaneously, with the operations of other blocks, an „of-line system“. Examples of both types of system will be given later. Both inputs and outputs can be distributed to all levels, although most often the exchange with the environment is taken place on the lower (or lowest) level. When talking about vertical arrangement, we refer to higher and lower level units, with the obvious interpretation. Let us also indicate that the interaction between levels does not have to involve only the adjacent levels, as shown for simplicity in Fig. 2.1, although, to a degree, this depends on what one considers as subsystems on a given level.

1970, Hugh Douglas Price    


Regional convergence in per capita income
 | FOS: 5.6 Political Science
In: Price, Hugh Douglas (1970). Rise and Decline of One-Party Systems in Anglo-American Experience. In: Huntington, Samuel P./ Moore, Clement H. (Hrsgg.)(1970). Authoritarian Politics in Modern Society The Dynamics of Established One-Party Systems. New York, London: Basic Books. S.96.

053 (1970) Hugh Douglas Price

FIGURE 3-5. State Political Systems and Policy Outputs: Suggested Processes Involved in Spread of Industry, Income, Two-Party Competition, and State Spending Programs (dashed lines indicate relations at issue in recent cross-sectional debate)



Untangling the interplay of economic and political factors will require analysis of time-series data, rather than just cross -sectional data. And it will probably involve non-recursive causal models that go well beyond the simple types analyzed by Blalock. Thus to explore the spread of industrial development (and consequent convergence of per capita income for regions and states) one might well consider the political effects of development as well as some of the institutional opportunities for using the federal government to promote development. Figure 3-5 spells out one very simple model of some of the processes that seem to have been at work in bringing about regional convergence in per capita income. But to deal with this question adequately would require a whole book on American political development, far exceeding the suggested limits for this volume.
[Fig.]
The overall line of argument in this essay can be summarized, a bit abruptly, as follows:

1. Some of the basic functional problems of a one~party system have been dealt with in the Anglo-American experience, but at the national level, and in the period before 1800 for England, and before 1860 for the United States.
2. Most literature on one-party politics in America deals only with subsystems and concentrates largely on electoral politics, The consequences of one-party politics for policy are currently under debate, but all seem agreed that one-party electoral politics is becoming rarer at the state or regional level.
3. Manipulation of political inducements by urban (or state) „machines“ has been analyzed for decades, and this body of literature may be more useful for students of one-party systems abroad.

1970, Mihajlo D. Mesarović   Donald Macko


Levels of abstraction: The stratified system
 | FOS: 2.2 Electrical engineering
In: Mesarović, Mihajlo D./ Macko, Donald/ Takahara, Yasuhiko (1970). Theory of hierarchical, multilevel, systems. New York, London, Paris: Academic Press. S.39.

075 (1970) Mihajlo Mesarović: Donald Macko: Yasuhiko Takahara

FIG. 2.3 A three-strata diagram of an automated industrial operation.



Other man-made stratified systems can be found in industrial automation, as discussed in Chap. I. A completely automated industrial plant is usually modeled on three strata: the physical processing of material and energy, the control and processing of information, and the economical operation in reference to efficiency and profitability (Fig. 2.3). Notice that on any of these three strata one is dealing with one and the same item, the basic physical product. On the first stratum it is viewed as a physical object to be changed in accordance with the physical laws; on the second stratum it is viewed as a variable to be controlled and manipulated; and on the third stratum it is viewed as an economic commodity. There is a different description, a different model for each of these views of the system; however, the system is, of course, one and the same.

1971, Howard T. Odum    


Replacement Value of Ecosystems
 | FOS: 1.5 Earth and related environmental sciences
In: Odum, Howard T. (1971). Environment, power, and society. New York, Chichester: Wiley-Interscience. S.297.

034 (1971) Howard T. Odum

Figure 10-8 Diagram illustrating some of the work done by both nature and man's economic system in developing recreational values for man from natural ecosystems. Numbers are for the complex of marine bays near Corpus Christi, Texas with an area of 228,480 acres. Economic activity was evaluated by Anderson [1] with recreation, tourism, and fishing $166/ (acre) (year) and oil, gas, shell, cooling waters, and savings on shipping $203/ (acre) (year). Using $10,000 kcal/dollars work equivalents were calculated. Energy contributions of personal activity by 13,914 visitors per day was converted using 3000 kcal/ (person) (day). Management by state and federal agencies was estimated as $1 million annually.



Many kinds of public actions of sweeping importance to natural systems are justified on various kinds of cost benefit ratios based on money in such a way as to ignore the important values not part of the money economy. In some public hearings and court cases in 1969 the side of the greater good has been reinforced with ecosystem network diagrams which can readily show the fallacies and incomplete calculations by developers such as the Army Engineers and large corporations. Figure 10-8, for example, shows the greatest energy values without dollar equivalents. However, it is possible to reverse the calculation which we did on work equivalents of dollars. We can put dollar values on the ecosystem energies using the dollar/calorie equivalent of the whole economy as a rough approximation. For example, in an incident in North Carolina, surveyors cutting a swath through a public recreation park with climax forest claimed that their damage to the public per acre was $64 for the wood they cut. Public protest reflected the deep sense that this was not just. First consider the actual value in energy units and convert. The value as a public recreation and life-support system is its replacement cost. To replace complex, diverse, and beautiful forest requires about 100 years. The photosynthesis per square meter of a forest may be approximately 40 kcal/ (m2) (day). The dollar equivalent of work driven by organic fuels is about 10,000 kcal / dollar. With 4047 m2 / acre, the dollar value of replacement of an acre of this forest is $590,000 per acre. Losing the development value of 100 years for an acre of land is a major loss. A single tree of about 100 years of age is estimated in this way to be worth $3000.

1971, Howard T. Odum    


Group action and coordination
 | FOS: 1.5 Earth and related environmental sciences
In: Odum, Howard T. (1971). Environment, power, and society. New York, Chichester: Wiley-Interscience. S.211.

038 (1971) Howard T. Odum

Figure 7-2 (e) Social power system example from Harary in Cartwright drawn as an energy network.



Systems of higher animals and man through their programs of information transfer and response to each other’s information exert controls and influences on each other’s works. These are adaptive and serve to produce group actions corresponding to group structures that develop. In psychological studies the principles of social action through power and force have long been recognized and described with factors and matrices of different combinations of interaction (see, for example, Ref. 4). Recognized are resistances to forces, opposing forces, and some of the same concepts which have their counterparts in the physical and biological systems. For historical reasons social science has been reluctant to recognize that the pathways and expressions of social power are the same kind of flows that occur in electric power lines and atom bombs. The measures of correlation, frequency, and probabilities have been used instead. The energy diagrams may encourage the use of a real energy unit (kcal) as a common denominator, uniting physical, biological, and social theorems.

In Figure 7-2(d) a human individual is shown with opinions entering and leaving and with actions resulting from the opinions prevailing in the information storage. A social structure of three such individuals (such as executives in a corporation; members of a family, etc.) is given in Figure 7-2(d) forming a power network like that discussed by French [7]. In this example, the energy flows include those of the human operating on food supplies plus larger power flows that depend on their actions. Included is one pathway of data from the real world (not opinion). Truth is the state of noncontradiction, in this case between the several inputs from real world and opinions. As shown, each opinion pathway is really a double pathway including work of transmitting the information and the tiny energy content of the information itself (which has high amplification value). The degree of influence of one unit on another through opinions includes the interior matching of truth plus the coefficients of the input multiplier actions that represent the previously established status of the other individual.

Diagram of a more complex tribal organization

In Figure 7-1 a small tribal organization works on agricultural plots where their group action requires coordination for maximum output of food. The food flow supports the individuals who choose a chief through a small work expenditure for organization of the group, the exchange of opinions that sets up acceptance of control in their memory systems, and finally the selection of the leader. The chief then does the work of guiding the group. As shown in the diagram, such a system has loopback reinforcement work for the individuals in relation to agricultural production, and the chief helps to prevent competition and to focus group effort — a necessary system expense. In the process of system self-design some extra work may have to be expended in fighting, for dominance is measured in proportion to the ability to control others through physical power in some primitive circumstances.

In better circumstances when individual physical power is no longer the measure of the ability to control others, voting procedures are relied on and provide a more accurate accounting of the number of component powers available. Control mechanisms must recognize the true distribution of power or be by-passed. They will be loop-rewarded only by drawing most of the power of the system into group actions. Successful stable political organization must represent actual power distribution or be eliminated as some of the excess power in alternative patterns flows into the work of reorganization.

1971, Stephen David Bryen    


Risk, awareness, consciousness and the human mechanism Response
 | FOS: 5.6 Political Science
In: Bryen, Stephen David (1971). The Application of Cybernetic Analysis to the Study of International Politics. The Hague: Martinus Nijhoff. S.14.

056 (1971) Stephen David Bryen

Figure 1:2, B Human Mechanism Response



In this conflict of goals between the servo-mechanism and the house occupants an interesting observation can be made. Man made instruments, whether they are simple thermostats or highly complicated and responsive computer systems, are constructed along standards considered relevant by design engineers. Design engineers assign a high value to the mechanisms they create. Thus a higher value is placed on the heater than on the people who have to try and survive the winter in the house. A servo-mechanism of this kind is shown in Figure 1:2 A. Human systems, on the other hand, are more accustomed to taking risks of varying kinds. A heater will be pushed beyond its means to satisfy a condition of cold weather. An automobile will be run at a speed greater than it is designed to operate at. An army will be ordered to march farther than it is believed armies can march. A human mechanism is illustrated in Figure 1 : 2B.

Risks can be considered as either foolish efforts to go beyond the limits of anyone system with only occasional successes, or risks can be understood as decisions by complex systems that other conditions will help offset the risk anticipated. For example, it may be believed that an army can march only ten hours at a time. This belief is based on information about the marching time of armies – that is „x“ numbers of armies have been able to march only ten hours at a time. But a General may dispute this information if he believes that his soldiers are willing to try to exceed the ten hour maximum, or if he sees advantages in the terrain he must traverse, or if he believes his data is based on armies not as well equipped or managed as is his own army. Consequently, he takes a risk in the hope that the information he has about his own force, however incomplete, is more relevant than the data he has received about other armies.

The General in the case above may be said to be „aware“ of the capacities of his soldiers and the task they face together. „Awareness“ is based on a superior amount of information. As the army begins its march, the General can watch very carefully the progress the army makes, and attempt to take account of that progress against the original awareness he had. In cybernetic terms, the General „scans“ the former information – his awareness and the risk he has taken – with the incoming flow of results. At some stage he should become „conscious“ of the real possibilities – whether to continue, or to modify the goal of the march in some way. In effect, by becoming „conscious“ of alternatives he can make sensible decisions about future strategy.

Risk, in this case, has promoted knowledge and opportunities for action that did not exist previously. Moreover, risk has made the General „conscious“ of the capacities of the military system to move across terrain. He would have not known this had he used only the information that he had at the start (that is, that armies could move along at only ten hours per day).

Consciousness of the potentials of a system at anyone time involves certain „costs“ to the system. In the case of the General the decision to try to exceed the known capacities of the system involved committing the system to a policy that could have been dangerous. The General had to demonstrate not only the courage to make the decision, but he also had to be willing to continuously sample the new information he was gathering in order to adjust his decision if necessary. As the discussion of cybernetic analysis unfolds, the importance of consciousness in systems will be expanded.

1971, Stephen David Bryen    


Consciousness and risk in policy choice
 | FOS: 5.6 Political Science
In: Bryen, Stephen David (1971). The Application of Cybernetic Analysis to the Study of International Politics. The Hague: Martinus Nijhoff. S.74.

069 (1971) Stephen David Bryen

Figure 2:7 Consciousness and Risks in an Action System



The intensity of choice relates to the type of system making choices. A sustaining system possesses the facilities and sensors to sample its policies in a reasonably careful fashion. Thus the initiatives of a sustaining system might be of somewhat less intensity than in a system that lacked developed sensing apparatus. An action system because it lacks developed sensing facilities will have to make policy choices of higher intensity than a sustaining system. Thus an action system will involve more risk to itself and to the rest of the system because in order that it pursue conscious policy the intensity of that pursuit must be high. This is shown in Figure 2:7.

Passitivity factor

In actuality, the international system consists of decision making through environmental systems and decision making generated by action systems. Action system performance is restricted by the existence of environmental systems. Environmental systems, it will be recalled, tend to delay in making policy. From the perspective of an action system, this delay will consist of passivity. What passivity means to an action system can be explained through an example. Suppose that an action system developed between the United States and the Soviet Union, with Great Britain and Poland cooperating in the effort. Suppose as well that other major powers remained „passive“ vis it vis the action system. The action system would have a chance of success so long as these other actors remained passive toward the action system. This is because the action system would be politically free to try and solve a certain problem. But if a shift from passivity to activity took place, the chances of the action system maintaining its freedom of action would decline substantially. What is critical from the point of view of an action system is how long it takes for passive states to become active and challenge the action system. In part the time factor will depend on how well managed the action system actually is, and how quickly it can achieve its goals. It would also depend on what preparations an action system could make to encounter the shift from passivity to activity.

1971, Robert Alan Dahl    


A pluralistic social order
 | FOS: 5.6 Political Science
In: Dahl, Robert Alan (1971). Polyarchy. Participation and Opposition. New Haven & London: Yale University Press. S.79.

092 (1971) Robert A. Dahl

- -



Consider now what a relatively „advanced economy“ both makes possible by its performance and requires for its performance. An advanced economy not only can afford but also requires the reduction of illiteracy, the spread of universal education, widespread opportunities for higher education, and a proliferation of means of communication. Not only can it afford to produce an educated labor force, but it needs one: workers able to read and write, skilled workers who can read blueprints and respond to written directions, engineers, technicians, scientists, accountants, lawyers, managers of all kinds. Not only does it produce but it must have speedy and reliable systems of communication, including systems that transmit a vast amount of public or quasi-public information. It not only makes possible but at the same time requires a multiplicity of durable and highly specialized organizations manned by strongly motivated staffs who are loyal to the goals of the organization: factories, banks, stores, schools, universities, hospitals, mass transit systems, and thousands upon thousands of other types of organizations.

Because of its inherent requirements, an advanced econmy and its supporting social structures automatically distribute political resources and political skills to a vast variety of individuals, groups, and organizations. Among these skills and resources are knowledge; income, status, and esteem among specialized groups; skill in organizing and communicating; and access to organizations, experts, and elites. These skills and resources can be used to negotiate for advantages — for oneself, for a group, for an organization. Groups and organizations develop a thrust toward autonomy, internal and parochial loyalties, complex patterns of cohesion and cleavage. When conflicts arise, as they inevitably do, access to political resources helps individuals and groups to prevent the settlement of the conflict by compulsion and coercion and to insist, instead, upon some degree of negotiation and bargaining — explicit, implicit, legal, a-legal, illegal. Thus systems of bargaining and negotiation grow up within, parallel to, or in opposition to hierarchical arrangements; and these systems help to foster a political subculture with norms that legitimate negotiating, bargaining, logrolling, give and take, the gaining of consent as against unilateral power or coercion.
Even within ostensibly hierarchical organizations, leaders learn that compulsion and coercion are often damaging to incentives. In an advanced economy, long-run performance under threat or coercion is less productive at all levels than a more willing performance based upon voluntary compliance. Thus the fear of punishment for bad performance is not merely supplemented but in many respects displaced by the expectation of rewards for successful performance. Just as slave labor is in general less efficient than free labor, so badly paid, discontented workers are less productive in the long run than highly paid, contented workers. For technicians, executives, scientists, and intellectuals the need for a measure of willing performance, based on their „consent,“ is even greater. And a large measure of autonomy and discretion is also found to produce better results than rigid, overcentralized supervision.

Thus an advanced economy automatically generates many of the conditions required for a pluralistic social order. And as a pluralistic social order evolves, at least in an elementary form, some of its members make demands for participating in decisions by means more appropriate to a competitive than to a hegemonic political system.

If we use a single arrow with a C to suggest the direction of causation, the argument might be represented as follows:
Advanced economy — C → pluralistic social order — C→ demands for a competitive political system
The argument as it stands is, to be sure, oversimple. It requires at least three qualifications:

First, even if an advanced economy creates some of the conditions required for a pluralistic social order, it does not create all the conditions required: witness the USSR and East Germany, which combine rather advanced economies with centrally dominated social orders.

As we have already observed, the fit between economic „level“ and political system is loose; yet just as the fit is better at very low levels (polyarchies rare), so it is better at very high levels (hegemonic systems rare). Our argument implies — rightly, I think — that as countries with hegemonic systems move to high levels of economic development (for example, the USSR and the Eastern European countries) a centrally dominated social order is increasingly difficult to maintain. For if our argument is correct, economic development itself generates the conditions of a pluralistic social order. The monopoly over socioeconomic sanctions enjoyed by the hegemonic leaders is therefore undermined by the very success of their economy: the more they succeed in transforming the economy (and with it, inevitably, the society) the more they are threatened with political failure. If they allow their monopoly over socioeconomic sanctions to fragment and yet seek to retain their political hegemony by exploiting their monopoly over violence — a transformation from a centrally dominated social order to what was called earlier a quasi-pluralistic social order with repressive violence  — then they confront the enormous limitations, costs, and inefficiencies of violence, coercion, and compulsion in managing an advanced society where incentives and complex behavior are needed that cannot be manipulated by threats of violence.

The tensions within a hegemonic regime in a society at a high level of development might be indicated as follows, where the jagged, double-ended arrows represent conflict.

Second, while economic „success“ may threaten hegemonies by generating demands for political liberalization, economic success has not threatened polyarchies, but economic failure has. For economic difficulties, particularly when they take the form of severe unemployment or rapid inflation, generate demands for a hegemonic regime and a centrally dominated social order.

Third, it may be that the sharpness of this difference is already being blunted, for it is now becoming evident that affluent societies generate their own frustrations and discontents. Although affluence may increase the pressures for competitive politics in countries now ruled by hegemonic regimes, it is far from clear that affluence will continue to strengthen allegiance to democracy in countries that already have inclusive polyarchies.

1972, Helmut Krauch    


Zielgruppenkommunikation in der Direktdemokratie
 | FOS: 5.3 Sociology
In: Krauch, Helmut (1972). Die Computer-Demokratie · Hilft uns die Technik entscheiden? München: Goldmann Politik + Zeitgeschehen. S. 73.

026 (1972) Helmut Krauch

Ablauf eines ORAKELS.



In einem Experiment wurde 1967 an der Universität von Kalifornien in Berkeley ein Staatswesen der Zukunft in eine Direkt-Demokratie simuliert. Politiker und Fachleute diskutierten Streitprobleme, und die Staatsbürger schauten dabei nicht nur zu, sondern gaben fortlaufend Bewertungen ab, die von einem Computer blitzschnell ausgewertet und dargestellt wurden. Die politische Diskussion sollte dadurch entsprechend den alten demokratischen Idealen wieder direkt ins Volk hineingetragen werden. Eine Rundfunkstation half im Frühjahr 1967, dieses Konzept öffentlich zu experimentieren. Schließlich interessierte sich auch das Deutsche Fernsehen dafür, filmte den Versuchsaufbau und beriet über Möglichkeiten, ein solches Experiment auch einmal im Deutschen Fernsehen zu senden.
Dieses System wurde ORAKEL getauft, weil mit seiner Hilfe groBe Massen von Staatsbürgern gemeinsam planen und Wege in die Zukunft eröffnen können.

ORAKEL besteht aus einem
— Organisierten Konflikt, einer
— Repräsentativen Auswahl von Bürgern, die sich um die
— Artikulation
— Kritischer
— Entwicklungs-
— Lücken

bemühen. ORAKEL bedeutet Organisierte Repräsentative Artikulation Kritischer Entwicklungs-Lücken. Der organisierte Konflikt ist nicht sehr verschieden von einer hitzigen Debatte im Parlament, die man im Fernsehen verfolgen kann. Auch im Parlament geht es zwar nicht immer, aber doch häufig um ge­sellschaftlich und politisch heiBe Themen. Nur ist ganz offen­sichtlich, daß dabei manche Bevölkerungsteile schlecht oder gar nicht vertreten sind, andere überstark. Deswegen wird bei ORAKEL dieser Konflikt so organisiert, daß daran Vertreter aller direkt oder indirekt betroffenen Gesellschaftsgruppen be­teiligt sind, die in ihrem Bereich und zur Vertretung ihrer Interessen über ausreichenden Sachverstand und Fachwissen verfügen. Dabei ist zu beachten, daß der nötige Sachverstand eben nicht nur durch langjähriges Studium, sondern insbesondere durch Praxis, durch Erfahrung und Einsicht erworben werden kann. Dieser Personenkreis, der sich aus Politikern, Wissenschaftlern, Vertretern der Interessengruppen und nichtorganisierten Betroffenen zusammensetzt, beginnt zu streiten und versucht dabei, die gegensätzlichen Standpunkte möglichst deutlich darzustellen; dazu muß sich jeder gut vorbereiten. Er braucht nicht nur das notwendige Wissen, sondern auch Klarheit über die von ihm vertretene Interessenlage. Von vielen Gruppendiskussionen im Fernsehen unterscheidet sich der organisierte Konflikt durch seine Schärfe, die durchaus polemisch sein kann, jedoch nicht darauf gerichtet ist, den anderen persönlich abzuwerten, sondern seine interessengebundenen Weltanschauungen ans Licht zu bringen.

1972, Anthony Stafford Beer    


The management of variety in the political context
 | FOS: w
In: Beer, Anthony Stafford (1972). Project Cyberfolk. Santiago de Chile. Corporación de Fomento de la Producción. S.4.

047 (1972) Anthony Stafford Beer_small

- -



Government now communicates directly with the masses, in the context that they are also supplied by the mass media with a proliferation of information and misinformation about things — as soon as they happen. Looking at the outside loop in the diagram on page 4, we see this effect as

· massive amplification
· massiv change in periodicity

But the [… ?] loop does not change. This situation disobeys the law of requisit variety, and disbalances the homeostatic equilibrum in time. Then it is predictible that the masses, thus affected, will build up pressure in the system that can no longer be … — because the filtering capacity cannot contain the flow. This is born to lead to demonstrations, agitation, perhaps violance, perhaps revolt. It follows that the people should be provided with new means of communication with the government which

· match the amplification of government variety with less attenuation of this variety (establishing Ashby’s law)
· operate on the same time scale — that is immediately
· use technology serve the people as well as the government


Note: Transcript by G. Buurman from a handwritten manuscript of S. Beer

1972, Alexander Yakovlevich Lerner    


Control structure in an organised system
 | FOS: 2.2 Electrical Engineering, electronic engineering, information engineering
In: Lerner, Alexander Yakovlevich (1972). Fundamentals of Cybernetics. New York: A Plenum / Rosetta Edition. S.261.

058 (1972) Alexander Yakovlevich Lerner

Fig. 17.3. Example of a possible structure of a machine system for controlling a plant



The enumerated difficulties of realising a machine system of control can be completely overcome, provided we do not try to build an ideal system capable in any situation of finding instantaneously and implementing a strictly optimal control. In reality we do not require a system to be optimal but to be satisfactory, which will at least perform a control no worse than man would. The potentialities of man as regards receiving and processing information are limited, and even the most talented leader takes decisions on the basis of a relatively small number of factors and very rough forecasts, and spends a relatively long time in making decisions. This means that he cannot obtain a strictly optimal control. Nevertheless, plants and other complex organised systems controlled by man exist, and many of them develop successfully. This means that machine control systems may also prove viable if they perform the control functions, if not ideally, at least no worse than human beings do.

One possible structure of a machine system for controlling a plant is given in Fig. 17.3. This system is built up of learning, homomorphous (simplified) models of plants and media of various orders. The simplest and most quickly changing models of the first rank are intended for processing relatively small flows of information and to provide, quickly, control signals calculated to operate over short time intervals. The models of the second rank take into consideration more data, and calculate the control actions over a longer period of time. The models of the higher ranks work still more slowly but produce control actions for even longer periods. The models of the plant and of the medium of all ranks interact and generate the control signals of the group A, intended for keeping the plant in order, and the group B, for accomplishing its functions with respect to the medium.

In order that models change in accordance with changes in the properties and characteristics of the plant and the medium, they must be made adaptive, and for this purpose principles can be used which were described in Chapter 11. The ‚initiative‘ of a machine system, exemplified by a sufficiently large variety of possible solutions, can be achieved by introducing a moderate number of random changes from a generator of random signals.

The same principle can be applied for controlling not only the production process of a plant but also other complicated artificially organised systems which must function in a stable way under changing conditions.

Such systems may operate autonomously over a certain period of time which can be longer, the greater the number of ranks in the control hierarchy. However, from time to time the operation of the system has to be corrected by people who are responsible for ensuring that the system performs in a manner useful to society.

1973, Claus Offe    


Politische Krisentheorie
 | FOS: 5.3 Sociology
In: Offe, Claus (1973). »Krisen des Krisenmanagement«: Elemente einer politischen Krisentheorie. In: Jänicke, Martin (Hrsg.)(1973). Herrschaft und Krise · Beitrage zur politikwissenschaftlichen Krisenforschung. Opladen: Westdeutscher Verlag. S.213.

040 (1973) Claus Offe

- -



Erfolg oder Mißerfolg der Balancierung kontradiktorischer Imperative hängt von der organisatorischen Verknüpfung bzw. wechselseitigen Isolierung von drei »Subsystemen« ab, die wir nach den spezifischen Steuerungsmedien (s. 0.) als das ökonomische System, das politisch-administrative System und das normative (legitimatorische) System unterscheiden. Das ökonomische System ist zur Behebung seiner internen Funktionsstörungen auf hoheitliche Dauerintervention angewiesen; es gibt seinerseits – auf dem Wege der Besteuerung – Teile des in ihm erzeugten Wertes an das politisch-administrative System ab. Mit dem normativen System ist das politisch-administrative durch die Erwartungen, Forderungen, Ansprüche usw. verbunden, denen es konfrontiert wird (»specific demands«, nach Easton) und auf die es durch sozialstaatliche materielle und Organisationsleistungen reagiert; andererseits ist das politisch-administrative System auf »Massenloyalität« (»diffuse support«) angewiesen, von deren Umfang seine Autonomie und Dispositionsfähigkeit abhängig ist. Determinanten dieser funktionalen Legitimationsprozesse sind im politischen System selbst, nämlich in seinen sozialstaatlichen, ideologischen (Poulantzas, Miliband) und repressiven Funktionen einerseits, in autonomen »präpolitischen« Veränderungen des Normensystems, der Ideologien und des Klassenbewußtseins andererseits, zu sehen. Das Problem des politisch-administrativen Systems besteht nun nicht nur darin, den jeweiligen »Saldo« von bestandswichtigen Steuerungsleistungen und fiskalischer Abschöpfung (linke Seite des Schemas) bzw. Massenloyalität und sozialstaatlichen bzw. repressiven Politiken (rechte Seite) »positiv« zu halten, sondern auch darin, die Bearbeitung dieser beiden Problemkomplexe (Vermeidung von ökonomischen Funktionsstörungen und von politischen Konflikten) so vorzunehmen, daß nicht ein Problemtypus um den Preis einer Verschärfung des anderen gelöst wird: Funktionsstörungen dürfen nicht in Konflikte umschlagen, und umgekehrt. Zur Lösung dieses Problems muß das politisch-administrative System eine interne »Disjunktivität« entwickeln, die es erlaubt, die Probleme, die auf der rechten Seite des Schemas repräsentiert sind, gegen jene der linken Seite relativ zu isolieren. Angesichts der hier entwickelten Modell-Vorstellung einer zur Aufrechterhaltung des dominanten, tauschförmigen kapitalistischen Organisationsprinzips notwendigen, dieses aber zugleich immer in Frage stellenden politisch- administrativen Steuerungsinstanz ist nun zu klären, weshalb es nicht möglich sein sollte, daß krisenhafte Zuspitzungen dieses Dilemmas dauerhaft vermieden werden, – nämlich dadurch vermieden werden, daß zwischen dem »erforderlichen« Interventionsniveau und dem »bedrohlichen« Interventionsniveau ein relativ problemloser Entwicklungspfad eingehalten wird. Dieser entspräche dem Feld zwischen den Linien AB und CD. Dem Versuch einer begrifflichen Klärung des Krisenbegriffs muß also die Identifizierung empirischer Phänomene und Prozesse folgen, die den Kriterien dieses Krisenbegriffs genügen.

1973, Anthony Stafford Beer    


The Disregarded Tools of Modern Man
 | FOS: we
In: Beer, Anthony Stafford (1973). Designing Freedom. London: BBC (Radio Lecture, Transcript). S.16.

048 (1973) Anthony Stafford Beer

The Law of Requisite Variety (Ashby’s Law) — only variety can absorb variety. If varieties in a regulatory system are disbalanced, the system cannot attain stability. Assuming that the regulator has the smaller variety, there are only two ways of meeting the demand of Ashby’s Law. One is to attenuate variety in the system, the other is to amplify variety in the regulator. These strategies can be mixed. Examination of institutional systems often reveals that the attenuators and the amplifiers have been installed in the wrong loops—on the wrong side of the equation.



The Law of Requisite Variety (Ashby’s Law) — only variety can absorb variety. If varieties in a regulatory system are disbalanced, the system cannot attain stability. Assuming that the regulator has the smaller variety, there are only two ways of meeting the demand of Ashby’s Law. One is to attenuate variety in the system, the other is to amplify variety in the regulator. These strategies can be mixed. Examination of institutional systems often reveals that the attenuators and the amplifiers have been installed in the wrong loops—on the wrong side of the equation.


The text of six radio broadcasts given in the autumn of 1973 as the thirteenth series of Massey Lectures which were established in 1961 by the Canadian Broadcasting Corporation to enable distinguished authorities in fields of general interest and importance to present the results of original study or research.

1973, Jürgen Habermas    


Komplexität und Demokratie
 | FOS: 6.3 Philosophy ethics and religion
In: Habermas, Jürgen (1973 / 1977). Legitimationsprobleme im Spätkapitalismus. Frankfurt am Main: Edition Suhrkamp. S.183.

073 (1973) Jürgen Habermas

- -



[S. 14] Von sozialer Integration sprechen wir im Hinblick auf Institutionensysteme, in denen sprechende und handelnde Subjekte vergesellschaftet sind; Gesellschaftssysteme erscheinen hier unter dem Aspekt einer Lebenswelt, die symbolisch strukturiert ist. Von Systemintegration sprechen wir im Hinblick auf die spezifischen Steuerungsleistungen eines selbstgeregelten Systems; Gesellschaftssysteme erscheinen hier unter dem Aspekt der Fähigkeit, ihre Grenzen und ihren Bestand durch Bewältigung der Komplexität einer unsteten Umwelt zu erhalten. Beide Paradigmata, Lebenswelt und System, haben ein Recht; ein Problem stellt ihre Verknüpfung dar.

[S. 178ff]

5. Komplexität und Demokratie

Luhmann betrachtet eine Kommunikationstheorie, die Legitimationsprobleme mit Bezugnahme auf die diskursive Einlösung von normativen Geltungsansprüchen analysiert, als »out of step mit der gesellschafllichen Realität«. Nicht die Begründung von Normen und Meinungen, d. h. die Konstituierung einer vernünftigen Praxis, sondern der Selektionszwang von komplexen Handlungssystemen in einer Welt, die kontingent ist, d. h. auch anders sein könnte, wählt Luhmann zum Ausgangsproblem: »Habermas sieht das Subjekt, wie schon die vorausgehende Intersubjektivität, primär als Potential wahrheitsfähiger Begründung; die Subjektheit des Menschen besteht für ihn in der Möglichkeit, in intersubjektiver Kommunikation vernünftige Gründe angeben bzw. sich solchen Gründen oder der Widerlegung eigener Gründe fügen zu können. Damit erwischt er jedoch nur einen abgeleiteten (und zudem, wie mir scheint, epochenbedingten, längst überholten) Aspekt, der einen viel tiefer angesetzten Subjektbegriff voraussetzt.« Der Versuch, »den überlieferten Anspruch abendländischer Humanität mit dem Titel der Vernunft an einen [solchen] Subjektbegriff zu binden«, müsse zu einer systematischen Unterschätzung des Problems der Weltkomplexität führen: »Das Subjekt muß zunächst als kontingente Selektivität gedacht werden.« Die Herrschafts- und Verteilungsprobleme, die sich unter dem Gesichtspunkt der Klassenstruktur einer Gesellschaft stellen, sind obsolet geworden; sie verraten eine »alteuropäische« Perspektive, in der die eigentlichen Probleme, die unter dem Gesichtspunkt von Alternativenbereichen und Entscheidungskapazitäten auftreten, verdeckt werden.

»Fast alles könnte möglich sein, und fast nichts kann ich ändern« — dieser Satz drückt Luhmanns Grunderfahrung aus. Diese könnte so interpretiert werden, daß hochkomplexe Klassengesellschaften einerseits aufgrund ihres Produktivitätspotentials den Spielraum der Möglichkeiten, ihre Umgebung zu kontrollieren und sich selbst zu organisieren, erheblich erweitert haben; daß sie aber andererseits infolge ihres naturwüchsigen Organisationsprinzips Beschränkungen unterliegen, die eine autonome Nutzung des abstrakten Möglichkeitsraumes verhindern und überdies einen Überhang an selbst erzeugter (vermeidbarer) Umweltkomplexität zur Folge haben. Tatsächlich interpretiert Luhmann die erwähnte Erfahrung jedoch in dem konträren Sinne, daß das Gesellschaftssystem mit einem drastisch erweiterten Kontingenzspielraum Freiheitsgrade erwirbt, mit denen es sich selbst unter einen wachsenden Problem- und Entscheidungsdruck setzt: die Strukturen und Zustände komplexer Gesellschaftssysteme sind zumindest im Bereich von Organisation und Politik zufällig und damit praktisch wählbar geworden, aber doch so, daß die Auswahl aus dem selbst eröffneten Alternativenbereich jetzt ein Problem darstellt, das alle anderen relativiert. Nachdem Luhmann zwischen bestimmter und unbestimmter System- und Umweltkomplexität unterschieden hat, bildet nicht mehr die (unbestimmte) Umweltkomplexität, sondern die durch systemrelative Umweltentwürfe bestimmbar gemacht Umweltkomplexität, also die Selbstüberlastung des Systems mit eigenen Problemlösungskapazitäten, das eigentliche Reduktionsproblem. Hochkomplexe Gesellschaftssysteme müssen sich an den Folgeproblemen ihrer wachsenden Autonomie abarbeiten, d. h. an den aus ihrer Freiheit resultierenden Notwendigkeiten.

Sobald diese Problempriorität festgesetzt ist, ergeben sich die weiteren Schritte von selbst. Das Problem der Weltkomplexität erfordert eine essentialistische und ausschließliche Anwendung des Systembegriffs. Daraus folgt: (1) Komplexe Gesellschaften werden nicht mehr über normative Strukturen zusammengehalten und integriert; ihre Einheit stellt sich nicht länger intersubjektiv über eine durch die Köpfe der vergesellschafteten Individuen hindurchreichende Kommunikation her; die unter Steuerungsaspekten behandelte Systemintegration wird vielmehr von einer unter Lebensweltaspekten zugänglichen Sozialintegration unabhängig. (2) Das von der Systemidentität abgekoppelte Selbst- und Weltverständnis der Menschen rutscht, soweit es »alteuropäisch«, d. h. an normativen Ansprüchen orientiert bleibt, in die Provinzialität ab; oder es löst sich von Normorientierungen überhaupt und bringt auch den Einzelnen in die Bewußtseinslage des Systems, indem er lernt, »eine unendlich offene, ontisch letztlich unbestimmte kontingente Welt zu entwerfen, auszuhalten und als Grundlage alles selektiven Erlebens und Handelns zu benutzen«. (3) Die Reproduktion hochkomplexer Gesellschaften hängt von dem ausdifferenzierten Steuerungssystem, dem politischen Teilsystem ab. Durch Steigerung seiner Informationsverarbeitungskapazität und seiner Indifferenz gegenüber den übrigen sozialen Teilsystemen gewinnt das politische System eine einzigartige Autonomie innerhalb der Gesellschaft: »Die Politik kann ihre Entscheidungsgrundlagen nicht mehr voraussetzen, sondern muß sie sich (selbst) beschaffen. Sie muß ihre eigene Legitimation leisten in einer Lage, die sowohl im Hinblick auf die Konsenschancen als auch im Hinblick auf erstrebte Ergebnisse offen und strukturell unbestimmt definiert ist.« Die Trennung des legitimatorischen Systems von der Verwaltung ermöglicht die Autonomie der Entscheidungsprozesse gegenüber dem Input an verallgemeinerten Motivationen, Werten und Interessen. (4) Da das Gesellschaftssystem keine Welt mehr konstituieren kann, die die Identität der Teilsysteme prägt, lassen sich die Funktionen der Politik nicht mehr mit dem Blick auf eine von der Gesellschaft: dem administrativen System abverlangte »richtige« Politik verstehen; »auf eine knappe Formel gebracht, geht es darum, daß das politische System seine Identität nicht mehr von der Gesellschaft ableiten kann, wenn es von der Gesellschaft gerade als ein kontingentes, auch anders mögliches System gefordert wird. Es muß sich dann in einer mit alteuropäischen Begriffen nicht mehr zu erfassenden Bewußtseinslage durch Strukturselektion selbst identifizieren.« Unter diesen Voraussetzungen ist es sinnlos, die Reflexivität der Verwaltung dadurch steigern zu wollen, daß man sie über diskursive Willensbildung und Partizipation mit der Gesellschaft rückkoppelt: »Entscheidungsprozesse sind […] Prozesse des Ausscheidens anderer Möglichkeiten. Sie erzeugen mehr Neins als Jas, und je rationaler sie verfahren, je umfassender sie andere Möglichkeiten prüfen, desto größer wird ihre Negationsrate. Eine intensive, engagierende Beteiligung aller daran zu fordern, hieße Frustrierung zum Prinzip machen. Wer Demokratie so versteht, muß in der Tat zu dem Ergebnis kommen, daß sie mit Rationalität unvereinbar ist.« (5) Der neue systemtheoretische Ansatz führt ein Universalität beanspruchendes Sprachsystem mit sich, das sich auf dem Wege einer Umformung klassischer Grundbegriffe (wie Politik, Herrschaft, Legitimität, Macht, Demokratie, öffentliche Meinung usw.) gegenüber konkurrierenden Ansätzen interpretiert. Jede dieser systemtheoretischen Übersetzungen ist zugleich eine Kritik an der Unangemessenheit der »alteuropäischen« Begriffsbildung, die mit dem evolutionären Schub zur postmodernen Gesellschaft veraltet ist; indem das Problem der Weltkomplexität die Führung übernimmt, ist das Problem einer vernünftigen Organisation der Gesellschaft zusammen mit einer Motivbildung über wahrheitsfähige Normen gegenstandslos geworden.

Dem unhandlichen Problem des Verhältnisses von Komplexität und Demokratie läßt sich noch am ehesten auf der Ebene der Planungstheorie ein bearbeitbares Format geben. Die Planungsdiskussion der letzten zehn Jahre hat u. a. zu einer Gegenüberstellung von zwei Politiktypen, in denen sich zugleich Planungsstile ausdrücken, geführt: die pluralistisch-inkrementalistische Prozeßpolitik, die sich überwiegend auf Konditionalplanung beschränkt, auf der einen Seite und die rational-komprehensive Systempolitik, die überwiegend Programmplanung erfordert, auf der anderen. Man kann die beiden Typen als das jeweilige Ende einer Skala verstehen, auf der die Handlungs- und Reaktionsmuster planender Bürokratien abgebildet werden können. Wenn wir eine weitere Dimension, nämlich die Partizipation der vom Planungsprozeß betroffenen Mitglieder des Gesellschaftssystems, hinzunehmen, ergeben sich die folgenden Politiktypen:

[Schema]

1974, Heribert Meffert    


Marketing und Produktion als lernfähige Subsysteme
 | FOS: 5.2 Economics and business
In: Meffert, Heribert (1974). Systemtheorie aus betriebswirtschaftlicher Sicht. In: Kade, Gerhard/ Hujer, Reinhard (Hrsgg.)(1974). Sozial-Kybernetik. Düsseldorf, Wien: Econ Verlag. S.73.

010 (1974) Heribert Meffert

Abbildung 10: Unternehmung als adaptives System (nach S. Young)



Young geht von der Forderung nach homöostatischer Ultrastabilität aus und postuliert das Modell einer Organisationsstruktur, die bei praktisch gleichbleibender Funktion durch eine entsprechende Änderung der Systemeinstellungen auf die veränderte Umweltbedingung einzugehen vermag und ihre innere Struktur variieren kann. Das System ist somit zur Wahrung eines stabilen Gleichgewichts gegenüber einem ganzen Störfeld fähig.

Ein erster Unterschied zu den einfachen Regelkreismodellen ergibt sich aus der Tatsache, daß Änderungen in der Umwelt rechtzeitig vom System antizipiert werden müssen. Nur unter diesen Voraussetzungen ist eine entsprechende Anpassungsfähigkeit gewährleistet. Demzufolge wird das Regelkreissystem in mehrere Elemente zerlegt. Es sind dies der Input-Erfasser und der Istwert-Erfasser sowie eine spezifische Kontrolleinheit. Der Input-Erfasser (Sensor) hat – in Form der Marktforschung oder des Rechnungswesens – Änderungen in den externen und internen
Variablen anzuzeigen. Der Istwert-Erfasser (Identifikator) zeigt den Zustand des Systems bzw. seiner Prozesse in jedem Zeitpunkt. Er gibt also beispielsweise Aufschluß über die Produktionskapazitäten, die Auftrags- und Lagerbestände. Diese Informationen werden der Entscheidungseinheit zugeleitet, die mit Hilfe einer gegebenen Menge programmierter Regeln ihre Dispositionen trifft.

Das Programm für solche Entscheidungsprozesse kann z. B. lauten: Wenn der Lagerbestand größer ist als die Meldemenge, tue nichts! Ist der Lagerbestand gleich oder kleiner als die Meldemenge, dann lautet die Regel: Gib die Bestellung über eine bestimmte Stückzahl auf!

Die Kontrolleinheit (Regler) ist schließlich jenes Element, welches den Input verändert, bevor dieser in das System bzw. den Proze eingeht, z. B. dergestalt, daß ein nicht vorhergesehener Großauftrag in kleinere Aufträge zerlegt wird.

Die eigentliche Lernfähigkeit des Systems wird durch den Einbau eines System Designer erreicht. Lernfähigkeit bedeutet, daß das System sich selbst reorganisieren kann und aus Fehlern der Vergangenheit lernt, um die Leistungswirksamkeit zu erhöhen. Der System Designer empfängt Ex-ante-Informationen vom Input-Erfasser bzw. Ex-post-Informationen über die Leistungen des Systems.

Entsprechen etwa die Leistungen des Systems nicht dem erwarteten Output, muß der System Designer die adaptiven Mechanismen verbessern. Das kann z. B. in der Form geschehen, daß die Regeln für programmierte Entscheidungen verbessert, die Arbeitsweisen des Input-Erfassers intensiviert oder die Kontrollmechanismen und der Informationsfluß verändert werden. Bei großen Störungen werden Strukturänderungen, z. B. bei starkem Wachstum der Übergang von der funkitonalen Aufbauorganisation zur Spartenorganisation und zur Divisionalisierung, im System notwendig.

Das in Abbildung 9 dargelegte Modell eines lernfähigen, adaptiven Systems ist relativ global aufgebaut und durch eine weitere Zerlegung des Gesamtsystems in Subsysteme zu verfeinern. Für jedes Subsystem sind die adaptiven Elemente (Input-Erfasser, Routineregeln, Istwert-Erfasser, Kontrolleinheit) festzulegen. Abbildung 10 zeigt ein solches Modell für zwei Subsysteme, das Marketing und die Produktion. Jedes der Subsysteme besitzt einen eigenen Designer. Die Designer sind wiederum durch einen Regelkreis höherer Ordnung miteinander verbunden. Die spezifische Funktion des übergeordneten Designers besteht in der Koordination der Design-Probleme.

1974, Heribert Meffert    


Automatisierung betrieblicher Abläufe
 | FOS: 5.2 Economics and business
In: Meffert, Heribert (1974). Systemtheorie aus betriebswirtschaftlicher Sicht. In: Kade, Gerhard/ Hujer, Reinhard (Hrsgg.)(1974). Sozial-Kybernetik. Düsseldorf, Wien: Econ Verlag. S.62.

011 (1974) Heribert Meffert

Abbildung 6: Regelkreisebenen im Unternehmen



Unternehmungen sind arbeitsteilige Systeme. Dies führt zur Frage, was die Kybernetik in organisationalen Unternehmungsmodellen zu leisten vermag. Je nach dem Grad der Zentralisation oder Dezentralisation ergeben sich unterschiedliche Regelungssysteme. Im Extremfall der Zentralisation verbleiben sämtliche Entscheidungstatbestände bei der obersten Leitung. Bei ihr laufen dann sämtliche Regelkreise zusammen. Im Falle der Dezentralisation werden Entscheidungen delegiert. Voraussetzung ist dabei die Vorgabe operationaler Ziele und eine Koordination und Kontrolle der jeweils nachgeordneten Instanzen (Unterregler). Die Unternehmensleitung hat darüber hinaus eine »koordinierende Reglerfunktion« zu übernehmen. Abbildung 5 zeigt ein stark vereinfachtes Modell vermaschter Regelkreise bei dezentralen Entscheidungen. Das Gesamtsystem wird in Subsysteme (Regelkreise erster und zweiter Ordnung) zerlegt.

[…]

Eine weitergehende Darstellung vermachter Regelkreise für mehrere Ebenen vermittelt Abbildung 6. In diesem Modell sind alle an der Leistungserstellung beteiligten Instanzen jeweils mit einem Teil der Entscheidungsaufgaben betraut. Jede Instanz kann als Regler auf den Prozeß einwirken. Ausgehend von der Produktionsleiter-Ebene über die Betriebsleiter-Ebene zur Meister-Ebene schlägt sich die Planung in immer konkreteren Führungsgrößen (z. B. Kennziffern) nieder. Jede Instanz kann mittels ihrer Reglereigenschaften im Rahmen der Kompetenzen korrigierend auf den durch Störgrößen beeinflußten Prozeßablauf einwirken. Das Ergebnis der Prozesse zeigt sich dann in den Regelgrößen, die an einem besonderen Meßort quantifiziert und mit den verschiedenen Führungsgrößen verglichen werden. Hinter diesen Schemata vermachter Regelkreise verbergen sich zahlreiche Probleme, die hier nur angedeutet werden können. Ein erstes Problem liegt in der Programmierbarkeit der delegierten Entscheidungen. Eng verbunden damit ist die Determiniertheit der Informationsverarbeitung. Sie nimmt von oben nach unten in der Hierarchie zu. Schließlich ist auf die Leitungsspanne zu verweisen, ein Problem, das sich mit Hilfe der Varietät interpretieren läßt.

1975, Alastaire M. Taylor    


Metamodel
 | FOS: 5.6 Political Science
In: Taylor, Alastair MacDonald (1975). A systems approach to the political organization of space. Thousend Oaks, CAL: Sage Publications. Social Science Information, 1975, 14:7. S.19.

009 (1975) Alastaire M. Taylor

Figure 2. Cybernetics I and II



We can now diagram a metamodel which a) accounts for i) biospheric and ii) sociocultural inputs from the total environment; b) recognizes the given sociocultural system as i) converter, ii) withinputs-generator, and iii) comprising numerous sub-systems (including the political); and c) relates its outputs — as material and societal technics — to positive and negative forms of feedback.

The diagram below indicates both how material and societal technics interact and, depending upon the state of the system vis-A-vis its environment, how they can combine so as to result in systemic self-stabilization or, alternatively, in systemic transformation. We shall designate the first systemic process „Cybernetics I“; the second „Cybernetics II“;. The diagram also aims to show that whereas Cybernetics I, comprising net negative feedback processes, acts to stabilize a given sociocultural system within its environment, the dominant positive feedback processes comprising Cybernetic II can i) increase the system’s negentropy and information gain, and thereby also increase its environmental control capability so as to actualize the existing potential within the system-environment nexus; and/or ii) enable the system’s outputs (in the form of material and societal technics) to cross the permeable frontiers separating one environment from another and so quantize to a new level of societal organization.

Examples of Cybernetics I are found in sub-hominid societies where Darwinian mechanisms are fully operative; again in mature or senescent sociocultural systems in which the available material technics have achieved their maximal environmental control capability and reached steady-state. As an example of the first type of Cybernetics II (systemic self-organization), we might choose lithic man’s advancement into the high latitudes. It was made possible by control of fire (energy production) and invention of progressively efficient tools (such as microliths). By attaining maximal use of this technology, the Eskimos could survive beyond the tree-line and maintain a viable symbiosis with an austere, i.e., low-energy physical environment. However, since the latter set constraints on expansion and control of the biosphere, negative feedback mechanisms became dominant, resulting in overall societal stabilization (Cybernetic I) – so that Eskimo society remained at S1 (in Figure 1), at least until the intrusion of an alien, more advanced technology.

1975, Edgar Frank Codd   Christopher J. Date


Interactive support for non-programmers
 | FOS: 1.1 Mathematics
In: Codd, Edgar Frank/ Date, Christopher J. (1975). Interactive Support for Non-Programmers: The Relational and Network Approaches. Working Paper. In Proceedings of the 1974 ACM SIGFIDET workshop on Data description, access and control: Data models: Data-structure-set versus relational (SIGFIDET '74). New York: Association for Computing Machinery. S.25.

054 (1969) Edgar Frank Codd: Christopher J. Date

Figure 4. RENDEZVOUS Subsystem



Associated with the relational approach is the concept of a relationally complete data sublanguage. Such a sublanguage has at least the retrieval power of a first order predicate calculus when applied to a collection of n-hierarchic relations of assorted degrees [14]. For users with interaction of unpredictable scope and complexity, such a capability is a basic one and should be augmented by a library of functions. For example, the functions COUNT, TOTAL, AVERAGE, MAXIMUM, MINIMUM, would be needed in almost any application environment, while functions that entail data-conditioned termination of iterated joins of a relation with itself are needed in product structure or family tree applications.

* For non-programmers (abbreviated NP) it is essential that such an augmented, relationally complete, retrieval capability (abbreviated ARC) be provided without branching, explicit iteration, and cursors. When this condition is fulfilled, we refer to the retrieval capability as NP/ARC. A language will be said to have the NP/ARC capability if it not only provides relational completeness without branching, explicit iteration, and cursors, but includes provision for function invocation to condition the selection of data and to transform the data selected from the data base.

Examples of NP/ARC languages are ALPHA [13], the relational algebra [14,10], and SQUARE [17]. Examples of data sublanguages which do not possess the NP/ARC capability are GAMMA ZERO [12] and the DBTG data manipulation language. The effectiveness of this capability is illustrated in the appendix, where we re-code in ALPHA a sample data base and application which was originally coded in COBOL-DBTG by Frank and Sibley [9]. The re-coding in ALPHA results in the elimination of all GO TO statements (15 of them), all PERFORM UNTIL statements (one of them), and all currency indicators (i0 of them). We do not claim that the NP/ARC capability will always yield reductions of this magnitude. A payroll procedure, for example, might not be reduced at all by expressing it in an NP/ARC language. We can, however, expect the NP/ARC capability:

1. to put many applications within the non-programmer’s reach, where programmers were previously a necessity;
2. to increase the productivity of programmers on many, but not all, data base applications.

[…]

The architecture of RENDEZVOUS itself (Fig. 4) is based on the assumption that casual users will frequently misformulate their queries. Accordingly, the subsystem is designed to engage the user in clarification dialog about his query. At appropriate times, it can re-state in precise system English what it presently understands the user’s query to be.

[Fig. 4]

1. User makes initial statement of his query (unrestricted English)
2. System interrogates user about his query (to obtain information which is missing or hidden in language the system does not understand, and to resolve ambiguities)
3. User responds to system interrogation
4. System provides a re-statement of user’s query in system English (in a very precise way, based on the n-ary relational calculus)

1976, Abraham Moles    


Der Kreislauf der Kultur
 | FOS: 2.2 Electrical engineering
In: Moles, Abraham (1976). Soziodynamik der Kultur. Stuttgart: Ferdinand Enke Verlag. S.77.

083 (1976) Abraham Moles

Abb. 6 Der Entscheidungsvorgang in einem auf die Masse wirkenden Organismus. Theoretisches Organogramm für die Psychologie einer Entscheidung nach den Vorstellungen von Kurt Lewin. Bei einer Entscheidung sind stets zwei Stadien zu unterscheiden: das prinzipielle und das der Ausführung. Die prinzipielle Entscheidung bedingt eine Abwägung verschiedener Faktoren wie: „Ich muß“; „ich kann“; „es ist nötig“, und die voraussehbaren Auswirkungen der Entscheidung: Abschätzung der wirtschaftlichen und der psychologischen Folgen; schließlich die „Reflexion“ des Wesens, das die Entscheidung trifft, auf die Masse derjenigen, die es „führt“, ein reflektiertes Bild, das erst nach einiger Zeit zu ihm durchdringen wird.



Die zur Diskussion stehenden Systeme haben stets eine Anzahl gemeinsamer Aspekte und bilden praktisch nur Varianten eines allgemeinen Schemas. Indem wir dieses allgemeine Schema erfassen, werden wir die elementaren Mechanismen finden, welche die Situation des Künstlers oder wissenschaftlichen Schöpfers im Verhältnis zur Gesellschaft bestimmen sowie einige ihrer Triebfedern erkennen. Es zeigen sich drei Hauptelemente der Kreisläufe in der Verbreitung der Kultur:

  1. Die Verbreitung des Werkes, sei es das Manuskript eines Dichters, eine technische Abhandlung über Elektrochemie oder eine Skulptur, bedingt immer mehrere Etappen, und zwar mindestens zwei. Die erste spielt sich innerhalb der Beziehung des Schöpfers zu einer Gruppe ab, in welcher sein Werk verbreitet wird (Verlagsgesellschaft, Freundeskreis, mehr oder weniger exklusive Galerie). Die Beziehung ist hier direkt: von Mensch zu Mensch, von Wille zu Wille. In der zweiten spielen die Massenverbreitungsmittel mit, d.h. das Prinzip der Kopie und damit die Vervielfältigung des Werkes, die oft recht gegensätzliche Aspekte zeigt, z.B. im Falle einer Skulptur, deren Vervielfältigung nur fotografisch sein kann, also das Werk in zwei Dimensionen zwängt. Meistens schiebt sich zwischen diese beiden Etappen eine dritte, die des Mikromilieus, das in der Gesamtheit seiner Aspekte die „intellektuelle Stadt“ bildet.
  2. Sämtliche Verbreitungssysteme besitzen auf jeder Ebene eine eingebaute Rückkoppelung. Damit ist gesagt, daß die Handlungen der kreativen Individuen oder Gruppen nicht unbewußt und blind sind, sondern die Ergebnisse berücksichtigen. Praktisch nehmen diese Reaktionen oder Ergebnisse in den eben unter 1. geschilderten beiden Etappen sehr verschiedene Formen an. Die Reaktion der Gruppe von Individuen auf die Handlungsweise des Künstlers oder Wissenschaftlers und ihre Rückwirkung auf ihn ist im wesentlichen durch psychologische Faktoren bedingt; sie beeinflußt die geistige Haltung des Schöpfers, seine intellektuelle Position, seine Pläne und damit seine zukünftige Produktion. Dagegen hat die Reaktion im Stadium der Verbreitungssysteme wirtschaftlichen Charakter. Sie gehört zu jener Ökonomie der Kultur, die die Massenmedien ins Leben gerufen haben und geht von existierenden Werken aus, auf die sie eine Filterung ausübt, ohne damit die Werke selbst zu verändern.
  3. Unabhängige von ihrer sonstigen Natur sind die Reaktionssysteme fast immer vielfach gegliedert. Zum Beispiel beeinflußt die öffentliche Meinung die Politik einer Galerie; die Einkünfte des Verlegers beeinflussen die künftigen Werke eines Autors. Dabei sind aber fast immer mehrere Reaktionssysteme parallel geschaltet und ihre Einwirkungen laufen manchmal in verschiedenen Richtungen. Jedes Reaktionssystem bildet selbst einen geschlossenen Mechanismus. So ist der der literarischen und musikalischen Kritik wohlbekannt; der der öffentlichen Meinungsforschung ist sehr rational und objektiv; während andere Mechanismen sehr differenziert und durch besondere Faktoren orientiert sind, wie z.B. die Unterhaltungen bei der Eröffnung einer Kunstausstellung.

Jedenfalls sind alle diese sogenannten „vierpoligen“ Reaktionssysteme stets — sobald man sie definiert hat — durch zwei allgemeine numerische Größen charakterisiert: Die erste ist die Bedeutung (im quantitativen Sinn) ihrer Einwirkung, das „Gewicht“ mit dem sie auf dem weiteren Verhalten des Organismus, mit dem sie gekoppelt sind, lasten: Gewicht der öffentlichen Meinung, Gewicht der Kritik, Einfluß des Interesses, das eine wissenschaftliche Doktrin erregt, usw. Diese Größe ist algebraisch; sie kann actio oder reactio sein und zu Verstärkung oder Blockierung führen. Die zweite, von der ersten so gut wie unabhängig, ist die Verzögerung, mit der die Reaktion sich auswirkt. Die öffentliche Meinung ist ein fortschreitender Mechanismus, der sich im Laufe der Zeit entwickelt und einige Zeit braucht, um die späteren Werke des Romanciers oder die Politik der Kunstgalerie zu beeinflussen; das gleiche gilt für die Entschlüsse des Programmbeirats einer Rundfunkstation. Es ist die Aufgabe der Wissenschaft, aus der Wirklichkeit verständliche Abstraktionen abzuleiten. Daher muß eine Untersuchung der Kulturzyklen solche Größen unter einem statistischen Aspekt und mit größtmöglicher Vereinfachung zu begreifen suchen.

1976, George E. P. Box    


Data analysis and data getting in the process of scientific investigation
 | FOS: 1.1 Mathematics
In: George E. P. Box (1976). Science and Statistics. In: Journal of the American Statistical Association, Vol. 71, No. 356. S.796.

089 (1976) George E. P. Box

* The experimental design is here shown as a movable window looking onto the true state of nature. Its positioning at each stage is motivated by current beliefs, hopes, and fears.



Between 1919 and 1928 an iterative sequence occurred that went through three main stages, each leading logically to the next via interaction of theory and practice. The analysis of existing records led to the analysis of experimental trials which then led to the design of experimental trials. There were different but interactive aspects to this development. We can see (i) sequential evolution of the new methods in response to unfolding realizations of need, (ii) the persuading of practitioners to try the new techniques, and (iii) the changing role of the statistician implied by the development.

3.12 Evolution of the New Methods

Fisher’s attempts to analyze experimental data quickly led him to the essential principles of experimental design. The need for randomization to achieve validity; for replication to provide a valid estimate of error; for blocking extraneous sources of disturbance to achieve accuracy. Blocking in two directions simultaneously (by randomized Latin squares) was particularly appealing. Fisher would have been brought to see the enormous advantages of the unorthodox factorial arrangements as an economical way to assess the effects of variables in combination by, for example, his early attempts to impart meaning to the differences associated with the 13 differently manured Broadbalk plots to which fertilizers had been applied in a highly nonbalanced manner. However, while the efficiency of factorial designs could be increased by packing in more factors, larger factorial designs required bigger blocks and hence produced greater inhomogeneity in the experimental material, giving larger experimental errors. The answer which quickly followed was confounding.

3.13 Persuading Practitioners

The blessings of feedback were only available if scientists would try out his designs but, not surprisingly, Fisher at first did not have an easy job selling his revolutionary ideas at Rothamsted. Indeed, the first design run to his specification (in 1924) was not done at Rothamsted at all. It was a randomized Latin Square design run at Bagshot for the Forestry Commission who had asked for and acted on his advice. But between 1924 and 1929, as described in „Studies in Crop Variation IV and VI“ [5, 6], there is a rapid development of ideas which were quickly put into practice. It is clear that Eden had become a convinced disciple during this period and it is refreshing, but alas unfamiliar, to see publication of new designs simultaneous with data obtained from their successful use. By the end of this period data were being collected from designs of great accuracy and beauty which included all of Fisher’s ideas. In spite of all this in 1926 the Director of Rothamsted, Sir John Russell, wrote a paper [16] in the Journal of the Ministry of Agriculture about agricultural experimentation which almost totally ignored the ideas of his protegé. However, in the next issue [9] in a paper notable for its brevity and clarity, Fisher outlined his philosophy on the subject, setting his boss to rights and anyone else who would listen.

3.14 A New Heritage for Statisticians

The original concept that the research station needed a statistician was revolutionary, but certainly the role initially envisaged in 1919 for the statistician was a passive and possibly even a temporary one. Russell wondered if anything more could be extracted from the existing records. Fisher’s work gradually made clear that the statistician’s job did not begin when all the work was over — it began long before it was started. The statistician was not a curator of dusty relics. His responsibility to the scientific team was that of the architect with the crucial job of ensuring that the investigational structure of a brand new experiment was sound and economical. The latter role is much more fun than the former. He himself relished it and we should thank him for bequeathing it to us. It calls for abilities of a high order. It requires among other things the wit to comprehend complicated scientific problems, the patience to listen, the penetration to ask the right questions, and the wisdom to see what is, and what is not, important. Finally, it requires from the statistitian the courage to wager his reputation each time an experiment is run. For the time must come when all the data are in and conclusions must be drawn; at this stage oversights in the design, if they exist, will become embarrassingly evident.

1977, Irving L. Janis   Leon Mann


The pattern of vigilance
 | FOS: 5.1 Psychology
In: Janis, Irving L. & Mann, Leon (1977). Emergency Decision Making: A Theoretical Analysis of Responses to Disaster Warnings. Journal of Human Stress. Juni 1977. S.39.

031 (1977) Irving L. Janis, Leon Mann

Fig. 1 A conflict-theory model showing basic patterns of emergency decision making evoked by warnings of impending danger. (Based on Janis and Mann. 1977).



As Fig. 1 indicates, the conflict-theory model of emergency decision making specifies four conditions as prerequisites for the pattern of vigilance. Each of these conditions can be fostered by appropriate informational inputs and other situational variables, such as exposure to prior training in simulated emergencies similar to the current one. Whenever all four conditions are present, the person is most likely to meet the criteria for vigilant information processing.
The first two of the four conditions make for arousal of decisional conflict – the person wants to avoid expected losses by taking whatever protective action is available but at the same time does not want to take the most salient one available because he realizes that the new course of action could result in other potential losses that he also wants to avoid. In this state of conflict, he becomes vigilant and seeks a better means of escape than the ones he has just been contemplating. He will mobilize his cognitive resources, scanning his memory intensively for previously acquired information about how to cope with the threat. He will also examine and appraise any external sign or verbal communication from others that holds forth the promise of helping him to find a more satisfactory escape route. His vigilant state mobilizes him to initiate social contacts, seeking advice and information from anyone he regards as potentially knowledgeable.
The third condition takes account of observations concerning the importance of hope as a crucial determinant of the quality and duration of vigilant behavior. In order to continue to search for a safe means of warding off or escaping the danger, the person must maintain the belief that a better escape route exists than the risky ones he is reluctant to adopt, and that helpful information can be obtained if he continues to seek it.
The fourth condition pertains to the decision maker’s belief that there is sufficient time to find the safest way out. Unlike a person in a panic-like (hypervigilant) state, a person in a vigilant state does not make snap judgments about the best thing to do, or become unduly influenced by what the people around him are trying to do. Rather, he uses whatever time he has to look for and evaluate potential escape routes. He notices obvious defects in the escape routes he is examining and does not overlook more complicated detours that might lead to a much safer way out. Thus, the person in a state of vigilance does not suffer from the cognitive constriction, perseveration, and errors of judgment that occur when one becomes temporarily hypervigilant.
We do not assume that the only causes of hypervigilance or of defensive avoidance are the conditions described in our model. Other conditions – such as taking certain drugs, witnessing a horrifying automobile accident, or becoming aware of one’s own state of high physiological arousal – can also evoke hypervigilance or defensive avoidance. An experiment by Krisher, Darley, and Darley for example, showed that young adults were much more likely to become fearful and then to display symptoms of defensive avoidance in response to a fear-arousing warning about the need for vaccination against mumps if they were made aware of their own allegedly fast heartbeats by being given false EKG auditory feedback than if they were given the same warning without the false autonomic feedback.

1977, John Wells Kingdon    


A Voting model
 | FOS: 5.6 Political Science
In: Kingdon, John Wells (1977). Models of Legislative Voting. The Journal of Politics. Vol. 39, No. 3 (August, 1977). S.575.

043 (1977) John W. Kingdon

Figure 1 In integrative model of legislative voting decisions



We are now in a position to present a model which attempts to integrate the various models in a fashion which incorporates the features just discussed. That model is displayed in Figure 1. The first two steps are the same as the first two in the consensus mode of decision, which I have presented elsewhere. If there is no controversy in the environment at all, the congressman’s choice is simple: he votes with that environment and is done with it. On many bills, for instance, a unified committee reports the bill and nobody opposes the committee position in any particular. If there is some controversy, he subsets the environment, considering only the actors which are most critical to him-his own constituency, his party leadership, his trusted associates in the House, his own policy attitude, etc. — which I call the „field of forces“ which bear on his decision. If there is no conflict among those actors, he votes with his field. I assume, as a legislator does, that if there appears to be no consideration which would prompt him to vote in a way different from that toward which he is impelled by every factor in his field of vision, then there is no reason to think twice. And as I have argued above, this is a beginning to an integrative model which is common to a number of the previous works on legislative voting.

If there is some conflict among the congressman’s relevant actors, he then proceeds to consider his goals, which I conceive for the purposes of this paper as being the three discussed above-constituency, intra-Washington influence, and public policy. But a goal is not brought to bear on the decision if it seems unimportant to him on this issue. It must pass what I have labelled a critical threshold of importance in order to be evoked and relevant to the decision. For example, a congressman’s constituency may have a vague and largely unarticulated opposition to foreign aid. In that case, he would say that there was a constituency opinion on the issue, but that it was not intense enough to bother taking account of.

1977, Shigekoto Kaihara   Iwao Fujimasa


The morbidity model
 | FOS: 3.5 Other medical sciences
In: Kaihara, Shigekoto/ Fujimasa, Iwao/ Atsumi, Kazuhiko/ Klementiev, Alexandre (1977). An approach to building a universal health care model: Morbidity Model of Degenerative Diseases. IIASA Research Memorandum. Laxenburg: International Institute for Applied Systems Analysis. S.4.

060 (1977) Shigekoto Kaihara

Figure 1. Submodels of health care. Morbidity Model



Morbidity Rate: MR(i): As shown in the upper part of Figure 1, the population is divided into two groups – – healthy (HP) and sick (TS). Sick defines persons with some disease, regardless of the treatment. The person himself may not know that he is ill: these people are included with the TS at this stage. There are also some people who consider themselves sick but, from the medical point of view, are actually not sick at all. They visit physicians, only to be examined and told that they are in fact healthy. But, since they are nonetheless consuming medical resources, they are classified with the „total sick“ group.

Since this is a dynamic process, a rate can be assumed between these two amounts, namely, the number of persons transferred from the healthy stage to the sick stage in a unit time. This rate is defined as the morbidity rate (MR).

Since the number of total sick is not known, it is usually difficult to estimate the morbidity rate, except for some special circumstances. This will be discussed later.

Recovery Rate: RECOV(i): Persons who get illnesses may recover – – in some cases after medical treatment and in others spontaneously. This summary rate may be defined as the recovery rate (RECOV).

Death Rate: DR(i): Persons who get illnesses may die even after medical treatment. This rate is defined as the death rate of patients (DR). Note that this rate is different from the ordinary death rate in health statistics (the number of persons who die per unit of time, divided by the total population): when there are more healthy persons, the ordinary death rate decreases. Accordingly, the ordinary death rate represents more the number of sick persons or the prevalence rate, whereas the death rate of patients reflects, in some part, the level of medical care. This will be discussed in the next sections.

1977, Edgar Morin    


Du cercle vicieux au cycle vertueux
 | FOS: 5.3 Sociology
In: Morin, Edgar (1977 / 1981). La méthode · I. La nature de la nature. Paris: Éditions Points. S. 17.

082 (1977) Edgar Morin

- -



J’ai indiqué quelles son les impossibilités majeures qui condamnent mon entreprise:
— l’impossibilité logique (cercle vicieux),
— l’impossibilité du savoir encyclopédique,
— la présence toute-puissante du principe de disjonction et l’absence d’un nouveau principe d’organisation du savor.
Ces impossibilités sont imbriquées les unes dans les autres, et leur conjugaison donne cette énorme absurdité: un cercle vicieux d’ampleur encyclopédique et qui ne dispose ni de principe, ni de méthode pour s’organiser.

Prenons la relation circulaire:

[figure]

Cette relation circulaire signifie tout d’abord qu’une science de l’homme postule une science de la nature, laquelle à son tour postule une science de l’homme: or, logiquement cette relation de dépendance mutuelle renvoie chacune de ces propositions de l’une à l’autre, de l’autre à l’une, dans un cycle infernal où aucune ne peut prendre corps. Cette relation circulaire signifie aussi qu’en même temps que la réalité anthropo-sociale relève de la réalité physique, la réalité physique relève de la réalité anthropo-sociale. Prises à la lettre, ces deux propositions sont antinomiques et s’annulent l’une l’autre.
Enfin, à considérer sous un autre angle la double proposition circulaire (la réalité anthropo-sociale relève de la réalité physique qui relève de la réalité anthropo-sociale), il ressort qu’une incertitude demeurera quoi qu’il arrive sur la nature même de la réalité, qui perd tout fondement ontologique premier, et cette incertitude débouche sur l’impossibilité d’une connaissance véritablement objective.

1978, Stroud Cornock    


Systems and world views
2 | FOS: 6.4 Art (arts/history of arts/performing arts/music)
In: Cornock, Stroud (1978). The structure of the systems paradigm. In: Trappl, Robert/ Pask, Gordon (Hrsgg.)(1978). Cybernetics of Cognition and Learning; Structure and Dynamics of Socio-economic Systems; Health Care Systems; Engineering Systems Methodology. Washington, London: Hemisphere Publishing Corporation. S. 361.

002 (1978) Stroud Cornock

Fig. 1 Plate Tectonic Geological Dynamics The elements are capitalized and bounded, and related elements are also capitalized. Relationships are set in lower case between elements. The open arrow indicates that the elements connected may be transformed into one another



1. Introduction

This chapter attempts to identify a part of the structure of a paradigm to which systems thinkers — however they may differ in philosophy and method — unite in making reference when they speak of ‚wholes‘, or ’systems‘. It is undertaken in pursuit of the more effective communication of systems concepts to non-specialists.
The assumption is that it is essential to offer the proselyte an agreed general definition of the language of systems thinking; one that is not only close to English usage, but expressed in a logical pattern of relationships between an economical minimum of entities, all of them centred around the conceptual locus: ’system‘.
(An alternative assumption would be that we should somehow impose a systems jargon in the form of a list of universally recognized terms, each associated with a precise written definition. This alternative assumption is rejected, on the grounds that it is not only unlikely to gain acceptance on the part of systems thinkers, but would act as an effective barrier to communication beyond the community of systems thinkers.)
Something will be said about the idea, implicit in the title of this chapter, that a system of ideas can have some skeletal ’structure‘, and why the integrity of such a structure is essential to the communicability of a system of ideas. Two examples will be given before presenting a picture of the application of the principle to systems concepts. The structures and definitions are rendered as explicitly and as clearly as possible, so as to facilitate critical appraisal.

2. Paradigmatic structures
The contention is that each powerful world-view (i.e. each means of generating understandings of phenomena and ideas) hinges around a small group of nodal concepts. Each nodal concept may be represented by a noun-phrase, and each may be so linked with its fellows as to form a pattern. The need for pattern stems from our tendency to handle ideas as gestalten. Without a pattern it remains palpably difficult to handle or communicate a circus of concepts at a sufficiently high (i.e. macroscopic) level, and the concepts are therefore conceived as a coherent whole only by one who is actively immersed within that particular universe of discourse.
Examples of conceptual systems embodying such patterns (i.e. highly successful conceptual systems) are:

The Copernican Solar System
Plate tectonic geophysical dynamics
Newtonian physics
Freudian psychology
Christian mythology
Marxian dialectical materialism

Each of the above hinges around a restricted number of concepts structured into a pattern that can be grasped in one ‚cognitive act‘. The failure of a communicant when using such a world-view to observe its implicit set of rules will violate our sense of what is ‚permissible‘, just as surely as does a language-statement such as: ‚The old ran across the road‘. The example of plate tectonics is developed in Fig.1, and the example of Christian mythology in Fig.2. In neither case does my treatment of the example pretend to define the paradigm, only· to illustrate the latent sense of structure that a nonChristian, non-specialist in geophysics can externalize when pressed to do so. (With the qualification that some tidying-up took place, the Figures were generated spontaneously in a few minutes.) The criterion for measuring the performance of this level of ’structure‘ is MEMORABILITY, ie. the paradigm will define the status of the familiar English words used to denote its components essentially in terms of the relative position of each within the whole scheme. Here is the core of this argument: relative position within a scheme.

3. Systems concepts
It is my contention that no memorable structure of the sort described in the foregoing section has received tacit acceptance throughout the systems movement. It is therefore necessary to exemplify this approach to the problem (i.e. of rendering systems concepts more ‚thinkable‘ and more communicable) by proposing a static structure which is the product of a selection process.
The structure is given, in schematic form, in Fig.3. This Figure most certainly does seek to define the mutual relationship between what are presented as the relevant entities. A written exposition of the definitions embodied in the schema is given in the following section; however, the definitions themselves are mutual ( cf. Maruyama, op. cit.), and are therefore best expressed in the form of the schema, so that the written notes serve to explain what is set out in Fig.3, and not to define terms.

1978, J. Lynn England    


Organism in an environment
 | FOS: 5.3 Sociology
In: England, J. Lynn (1978). An Ashby model for socio-economic impact assessment. In: Trappl, Robert/ Pask, Gordon (Hrsgg.)(1978). Cybernetics of Cognition and Learning; Structure and Dynamics of Socio-economic Systems; Health Care Systems; Engineering Systems Methodology. Washington, London: Hemisphere Publishing Corporation. S. 245.

004 (1978) J. Lynn England

Fig. 4



Ashby presents his Design in terms of an organism which is located in an environment. The organisms of interest in social impact assessment may be an individual, an organization, or a community. Their environments consist of other organisms of all three types, and a physical environment. Hence, an organism, whether an individual, organization, or communtiy, is a mechanism which emits learned behaviors: behaviors which are adaptive or survival promoting.
In Ashby‘ approach it is argued that consciousness is unnecessary. The organism and its environment
are interlocked in a state-determined system which may be described by a collection of variables and
the sequence of values they take over time. The interlock is such that there is a feedback relationship. Ashby points out that „systems with feedback cannot adequately be treated as if they were of one-way action, for the feedback introduces properties which can be explained only by reference to the particular feedback used.“ This has the interesting consequence that virtually all of the popular techniques of statistical modeling, such as path analysis, analysis of variance, and factor analysis are not applicable to such systems. The feedback provides the organism with non-affective information about the environment. A subset of variables is identified as the essential variables: those variables in the system which when changed to a significant degree, produce changes in other variables which become even greater until the organism, itself, changes to something very different from what it was originally. A problem for the organism is to maintain the essential variables within a set of boundaries; a boundary is a value of an essential variable such that once it is exceeded, the system becomes different from what it was.

The organism-environment system with its feedback relationship and the organism’s essential variables are assumed to be state-determined as long as variables not included in the system remain constant. However, some changes in variables outside the system may change and, subsequently, results in changes in variables in the system. The outside variables are called parameters.

A second feedback loop exists for the organism consisting of a channel from the environment to the
essential variables to the parameters, and, then, to the organism. „It carries information about whether the essential variables are or are not driven outside the normal limits, and it acts on the parameters …“ In comparing the feedback loops, Ashby notes that the first feedback plays a part within the reactions of organism and environment, but the second „determines which shall occur“.
The set of variables and feedback loops can be diagrammed as in Fig.3. The first feedback loop consists of the arrows labeled a and b. The second feedback loop consists of a, c, d, and e. In this formulation, the essential variables are isolated from the non-affective inputs and responses. The consequences of this separation have been explored for individuals by Nicolai M. Amosov. He suggests that such isolation of the higher intellectual functions (some of the essential variables) from the stream of sensory inputs and reactions makes their development possible. These include hierarchical processing of information, anticipation, feelings, planning, and (for Asimov) consciousness and creativity. It appears that similar concepts should be developed for the organizational and community levels.
Ashby contends that the system is goal seeking in the sense that as long as the parameters remain
constant, the trajectories of the variables in the system will approach equilibrium. When a system has
the two levels of feedback and is goal seeking it is called an ultra-stable system or homeostat.
An ultra-stable system possesses many of the properties claimed to be lacking in traditional social impact assessment. However, the challenge is to provide a usable interpretation of the Ashby concepts for social impact assessment.
When the organism for which impact is being modeled is intensely involved in interaction with
other persons, whether corporate, civic, or individual, as well as being involved in interaction with a
physical environment, and when its response to inputs from the environment depends on whether the input originates from an individual, a corporate person, a civic person, or the natural environment, it is conceptually useful to partition the organism’s environment. One equivalence class of the environmental partition is the physical environment. Karl Wittfogel described the concept of interaction between man and his physical environment which seems most defensible:

„Contrary to the popular belief that nature always remains the same—a belief that has led to static theories of environmentalism and to their equally static rejections-nature changes profoundly whenever man, in response to simple or complex historical causes, profoundly changes his technological equipment, his social organization, and his world outlook. Man never stops affecting his natural environment. He constantly transforms it: he actualizes new forces whenever his efforts carry him to a new level of operation. Whether a new level can be attained at all, or once attained, where it will lead depends first on the institutional order and second on the ultimate target of man’s activity: the physical, chemical, and biological world accessible to him.“

In other words, the organism (whether individual, corporate, or civic) and the physical environment are in a complex relationship of mutual effect. Its activities have come to have increasing ability to greatly modify the physical environment. At the same time it depends on the environment for its food, energy, and enjoyment. Its mode of mass food production, and the reliance on non-solar sources of energy have led it to extend its domination of the physical environment to the point that it is capable of severely upsetting the physical environmental system and subsequently harming itself. The capacity has been repeatedly demonstrated regionally, but fortunately never universally. As individuals, corporations, and civic actors have increased in population and technology, they have occasionally recognized a threat to the physical environment and have attempted to set up organizations to mediate the interaction between society and the natural environment. Figure 4 illustrates the position of the second equivalence class for the organism’s environment: mediating organizations. The mediating organization is a type of two-way filter. It attempts to control the inputs from the environment to the organism and at the same time restrict the organism’s outputs in such a fashion that changes in the physical are either eliminated or channeled in directions which keep the essential variables within their boundaries. There are two general types of inputs to the organism from the physical environment, one of which is through the mediating organization to the organism. The inputs which are directly from the physical environment to the organism include rainfall, storms, earthquakes, and mountain vistas which are not currently controllable through mediation and raw materials whose extraction is not currently restricted by the mediating organization. The second type of inputs is conceptualized as a set of withdrawals from the environment, but are controlled by the mediating organization. Timber or minerals are extracted from the environment, but they are extracted under severe controls in most areas.

1978, Johann Millendorfer    


Hard-observations of soft-variables
 | FOS: 1.7 Other natural sciences
In: Millendorfer, Johann (1978). Mechanisms of socio-psychological development. In: Trappl, Robert/ Pask, Gordon (Hrsgg.)(1978). Cybernetics of Cognition and Learning; Structure and Dynamics of Socio-economic Systems; Health Care Systems; Engineering Systems Methodology. Washington, London: Hemisphere Publishing Corporation. S.309.

006 (1978) Johann Millendorfer

Fig. 3b The iterative process of model development



1. Introduction and acknowledgements

The so-called soft-variables have been gaining increasing importance in the discussion of the future. The importance of the question of values, motivations and ways of acting has indeed been emphasized by all — even by those who develop mathematical models on the basis of hard-variables and who dispense with soft-variables only because they are hard to quantify. This chapter is to be understood as an attempt to carry out hard-observations of soft-variables, using a comparison by countries of variables which are understood as indicators for these soft-variables.

[…]

3. On the question of the method of investigation

The figure is self-explanatory: starting from a first observation or hypothesis on the basis of a ‚pragmatic decision‘ on the intention of the model, a first preliminary model is developed. The assertions (prognoses) of this first model, going beyond the original observation, are checked empirically; this examination yields additional information which is followed by a third step, etc., until a comparison of the model with reality shows no necessity or possibility of a correction or improvement of the model. A peculiarity of the method used in this work is the understanding of certain variables as indicators for more global variables hidden behind them […].

1978, Charles A. Laszlo   John. H. Milsum


Health sciences
 | FOS: 3.3 Health sciences
In: Laszlo, Charles A./ Milsum, John. H. (1978). Toward a system of care for health. In: Trappl, Robert/ Pask, Gordon (Hrsgg.)(1978). Cybernetics of Cognition and Learning; Structure and Dynamics of Socio-economic Systems; Health Care Systems; Engineering Systems Methodology. Washington, London: Hemisphere Publishing Corporation. S. 360.

017 (1978) Charles A. Laszlo: John H. Milsum

Fig. 1



The well-being of individual human beings is defined in terms of their physical and psychological interactions with the environment. As long as these interactions remain within certain acceptable limits determined by individual experience, social custom and medical opinion the person is considered to be healthy. If they fall outside, however, the individual is deemed to be sick.
From the systems point of view the individual receives inputs from the environment and, after ‚processing‘ produces an output. In turn this output action feeds back on the environment, to close a mutually causal loop. Health and sickness are thus labels of quality assigned to the outputs of a decision process with multiple inputs (Fig.1). When the output of this decision process registers ’sick‘ the person becomes a patient and enters the sick care system. The aim of this system is to readjust the ‚process‘ in the individual which has given rise to those outputs which have generated the ’sick‘ signal. In particular, this is the explicit aim of classical medicine.
Until now the ‚Health Care Systems‘ in our society have been designed to work in this sickness loop, and have been consistently identified with ’systems to cure‘. In this sense we may view our medical services and hospitals as tools for the implementation of ‚cure‘-oriented system strategy.
Of course the above statements have oversimplified the true state of the present system. There are many medical examples which broaden the spectrum of health care delivered beyond the curative aspects alone. The important point, however, concerns the relative weighting of priorities, effort and expense. A pertinent contribution of the systems approach can be to assess all programs in terms of desirable priorities in order best to satisfy some overall objectives. Establishing these objectives is not conceptually easy and neither is implementing them politically. Thus, the ‚cure‘-oriented system strategy may not necessarily be the most desirable. In system terms, instead of interfering with the ‚process‘, the ‚output‘ of the individual may also be regulated by changing the ‚inputs‘. Furthermore, instead of the binary decision between ‚healthy‘ and ’sick‘ a continuous decision process producing more finely graded output may be devised. This takes into account that the causal relations between inputs and outputs typically take a long time to work themselves out.
Thus the aim of a good control strategy is to provide anticipation in modifying inputs. In such a Health Care System a ‚care‘-oriented strategy dominates. The evaluation mechanism of such ‚care‘- oriented systems (shown in dotted lines in Fig.1) receive information not only from the ‚output of the individuals and their environments but also from the ‚input‘. The result of the evaluation and decisionmaking process will appear primarily in terms of modification of the ‚input‘ to the individual, i.e. the control of the environmental influences on the body and mind.

1978, Hartmut Bossel   Michael Strobel


Information processing and orientation of an actor system
 | FOS: 1.5 Earth and related environmental sciences
In: Bossel, Hartmut/ Strobel, Michael (1978). Experiments with an „Intelligent“ World Model. London: IPC Business Press. S.14.

035 (1978) Hartmut Bossel

Figure 1. Orientation of nonroutine behaviour



In our approach we see a social system as a concept-processing, purpose-oriented „actor“ interacting with its environment (which may contain other such actors). A brief survey follows; a fuller account is given elsewhere.

Concepts are information patterns which carry a certain meaning for the actor, eg „the house is on fire“, „environmental pollution“, „democracy“. His actions are understood as responses to the perception, recognition, and processing of concepts, with the aid of other concepts stored in his memory. This view goes beyond the classical stimulus-response type of unconditional, unreflected information processing, although the underlying sequence is similar.

We believe that the behaviour of a social system can be approximated as the interaction of its dominant actors. In a simulation the choice of relevant actors is determined by the task itself, which also determines the degree of aggregation or disaggregation. Individuals, collectivities, organisations, and institutions can all be viewed as actors.

Each actor can be considered as a concept-processing system interacting with its environment. Its essential functions are performed by its physical system containing the perceptors and effecters as well as the material part of the concept-processing system.

The programs and concepts necessary for the cognitive processes are contained in a memory. While some of them are concepts about factual objects and relationships, others concern normative concepts and relationships (discussed later). The sequence of concept-processing (which may or may not lead to observable behaviour) is sketched in Figure 1 and in more detail in Figure 2. Information about the state of the system and its environment is received by the perceptors and transformed into concepts. These concepts may or may not correspond to the real state, Pattern recognition and filtering play a role here, along with other factors: cognitive abilities, world knowledge, affects, and emotions. The concepts about the system state are compared to available normative „orientor“ concepts about a desirable state, if any are available.

If such guiding images (ideals, Leitbilder are not available — eg in a situation not previously encountered or considered — then the likely contributions of the situation (as perceived) to the satisfactions of the system’s interests and orientation must be determined. This requires a mapping of the (perceived) situation on the system’s orientation space, and a corresponding evaluation. In both cases (the comparison of the perceived situation with existing ideals, or its mapping on the system’s orientation space), discrepancies may result which determine priorities and motivations in the subsequent problem solving and policy search. A corresponding behavioural plan is then developed and tested using the internal model. Concepts about possible and probable resulting states are projected by the internal model and are again analysed as to their possible effect on, or violation of, orientor concepts.

1978, Hartmut Bossel   Michael Strobel


Information processing and orientation of an actor system
 | FOS: 1.5 Earth and related environmental sciences
In: Bossel, Hartmut & Strobel, Michael (1978). Experiments with an „Intelligent“ World Model. London: IPC Business Press. S.194.


Figure 2. information processing and orientation of an actor system



In our approach we see a social system as a concept-processing, purpose-oriented „actor“ interacting with its environment (which may contain other such actors). A brief survey follows; a fuller account is given elsewhere.

Concepts are information patterns which carry a certain meaning for the actor, eg „the house is on fire“, „environmental pollution“, „democracy“. His actions are understood as responses to the perception, recognition, and processing of concepts, with the aid of other concepts stored in his memory. This view goes beyond the classical stimulus-response type of unconditional, unreflected information processing, although the underlying sequence is similar.

We believe that the behaviour of a social system can be approximated as the interaction of its dominant actors. In a simulation the choice of relevant actors is determined by the task itself, which also determines the degree of aggregation or disaggregation. Individuals, collectivities, organisations, and institutions can all be viewed as actors.

Each actor can be considered as a concept-processing system interacting with its environment. Its essential functions are performed by its physical system containing the perceptors and effecters as well as the material part of the concept-processing system.

The programs and concepts necessary for the cognitive processes are contained in a memory. While some of them are concepts about factual objects and relationships, others concern normative concepts and relationships (discussed later). The sequence of concept-processing (which may or may not lead to observable behaviour) is sketched in Figure 1 and in more detail in Figure 2. Information about the state of the system and its environment is received by the perceptors and transformed into concepts. These concepts may or may not correspond to the real state, Pattern recognition and filtering play a role here, along with other factors: cognitive abilities, world knowledge, affects, and emotions. The concepts about the system state are compared to available normative „orientor“ concepts about a desirable state, if any are available.

If such guiding images (ideals, Leitbilder are not available — eg in a situation not previously encountered or considered — then the likely contributions of the situation (as perceived) to the satisfactions of the system’s interests and orientation must be determined. This requires a mapping of the (perceived) situation on the system’s orientation space, and a corresponding evaluation. In both cases (the comparison of the perceived situation with existing ideals, or its mapping on the system’s orientation space), discrepancies may result which determine priorities and motivations in the subsequent problem solving and policy search. A corresponding behavioural plan is then developed and tested using the internal model. Concepts about possible and probable resulting states are projected by the internal model and are again analysed as to their possible effect on, or violation of, orientor concepts.

1978, José F. Silvio    


The educational system and the environment
 | FOS: 5.3 Educational Sciences
In: Silvio, José F. (1978). System theory and the educational system. In: Trappl, Robert/ Pask, Gordon (Hrsgg.)(1978). Cybernetics of Cognition and Learning; Structure and Dynamics of Socio-economic Systems; Health Care Systems; Engineering Systems Methodology. Washington, London: Hemisphere Publishing Corporation. S.130.

039 (1978) José F. Silvio

Fig. 3 Relationships between the educational system and its environment



IV. Dynamics of the educational system and ist environment

In this section, we will attempt to integrate the ideas so far developed in a relatively isolated way, to expose the dynamics of the educational system and its relation with ist environment. These relations are illustrated in Fig. 3.

An individual becomes a student when he contacts the educational system where he will suffer a transformation. He will become part of the system and will be involved in the relations occurring among the system elements. The educational system displays a combination of its various elements to initiate the transformation process: the educators will manipulate educational contents using certain techniques for transmitting them, and complying with certain norms fixed by the political system, and incorporated into the power structure of the pedagogical units where the transformation takes place, under direct control of directors and administrators.

After complying with the norms to transit the system, the individual could complete or not a given educational level and, according to this we have distinguished between finished and unfinished products. The meaning of each type of product is different within the frame of the system environment, depending on the value (economic, social or political) attributed to the legal symbols granted by the educational system (diplomas, certificate, etc.) The pro-ducts of the educational system will be incorporated as inputs (labor force) of the economic system. The structure of the labor force has a hierarchy based on differential functions in the production process. Thus, the educational system creates a hierarchical ordering of its products by the ordering of its subsystems (educational levels and branches), contributing in this way to maintain the occupational hierarchy and a set of economic relations within society. Similarly, the educational system contributes to reproduce a set of power relations occurring within the political system, since its products have differential rights and duties, and potential quotas of power and participation in decision making.

A certain proportion of the products of the educational system returns to it, as we have indicated in previous sections, in the form of operators inputs such as teachers, directors and administrators. The system feeds itself with a part of its own Product, controlling its behavior and creating conditions for self-reproduction. At the same time, part of the products of the economic system serve as feedback input to education in the form of various types of resources. Besides serving as feedback inputs, these resources also serve as control instruments for the educational system through the political system. For example, the assignment of financial resources to education is a political decision. The quantity and type of resources to be allocated to a given level or branch of education is selected, credits are denied for certain activities and approved for others. In other words, the product of the political system (decisions), and that of the economic system serve as control element, as well as feedback element, to the educational activities.

This complex game of influences between these systems affects largely the dynamics of the educational system from its more general level to classroom activities. It also affects some or all of the structural elements of the system: inputs, products and process elements. Unfortunately, we cannot study this game in a more detailed way within the limits of this brief and introductory chapter to the subject. We have only sketched a reference frame work for a deeper study which will clarify the advantages and disadvantages of the application of systemic concepts to the analysis of educational processes.

1978, John Stringer    


Resources
 | FOS: 2.11 Other Engineering and Technologies
In: Stringer, John (1978). Operational research and public policy. In: Bunn, Derek W./ Thomas, Howard (Hrsgg.)(1978). Formal Methods in Policy Formulation. Basel: Springer. S.233.

051 (1978) John Stringer

Figure 3



There are other conflicts. There has been widespread cancern that the natural resources to support present levels of industrial activity will run out sooner or later; and fear that it might be sooner. As a crude summary of the vast amount of research and speculation on this point the debate falls between two schools. The ’doom’ school fear that man will run out of renewable resources, with disastraus effects. Their views tend to be reinforced by the ’conservatlsm’ and ’back to nature’ schools. Economic growth will have to be reversed, they say, with consequences for every kind of policy. The ‘cornucopians‘, by contrast believe that man’s ingenulty will find substitutes in good time for anything which becomes scarce. With enlightened economic policies, they say, growth can continue, since economic forces and technological ‘fixes’ will carry us through. A more modest position, between these extremes, is that provided there is enough energy, and the institutions of society can adapt to making investment decisions which are sufficiently long-sighted, and world shifts in economic power do not lead to major wars, then continued economic growth-is feasible and the world system need not collapse.

Energy problems look very different as seen by economists, by politicians, by technologists, according to concepts familiar to their own disciplines and to the different time horizons to which they are accustomed in their thinking. As a matter of public policy energy is a large central affair but this hardly reflects the fact that actions and decisions throughout society have substantial energy consequences. Thus energy is a relevant unit of account by which to incorporate resource questions into our model.

Energy must have a central place in this discussion because it is the ultimate resource. That is, all transformations of materials require energy, and with sufficient of it acceptable substitutes can be found for anything which becomes scarce. Goeller and Weinberg (1975) conclude that mineral resources are adequate provided man finds an inexhaustible non-polluting source of energy; the main problem is how to make the transition from the present state of relative plenty of oil, coal and other resource materials to what they call ‘The Age of Substituability’ using renewable resources only. The problems they see are social and political; new social institutions would be needed to overcome the fact that the market place optimises short-term advantages, thus inhibiting the transition. Appropriate policy changes are, therefore, contingent upon institutional changes.

We have now redefined the cluster of problems in terms of a balance between an input of resources and an output in terms of the satisfaction of human needs and desires. This balance is influenced by policy interactions and institutional change. For the purpose of reaching broad conclusions energy will serve as a single numeraire of input especially since a good deal of research on energy accounting (e.g. Wright (1975) and Slesser (1975)) could be used. We are not yet in a position to simplify the satisfaction side of the model, and might never be. Let us assume for the moment, however, that we can.

There is implicit in discussion of economic growth the idea that greater human satisfaction will be, and can only be, obtained via greater production of material goods and hence by the greater consumption of resources, but it may not be so. Maslow (1954) claims that there is a partially ordered hierarchy ranging from the basic physiological needs such a food; shelter and other needs for safety; then needs for love and esteem. The upper part of the range is the drive for individual self-actualisation which he expresses as ‚what a man can be he must be‘. Maslow has suggested that the attempt to obtain satisfactions further up this hierarchy is made as soon as, but not until, the more basic requirements have been satisfied. In that extravagant consumption of material goods is sometimes a surrogate for the satisfactions to be derived from individual self-actualisation, it could be that the optimum relationship between the degree of satisfaction achieved and the consumption of material resources, is as in the following diagram. Hopefully It will be found to be so.

1979, Nicolas Rescher    


Selfcorrection
 | FOS: 6.3 Philosophy ethics and religion
In: Rescher, Nicholas (1979). Cognitive systematization: a systems-theoretic approach to a coherentist theory of knowledge. Oxford: Basel Blackwell. S.96.

007 (1979) Nicolas Rescher

Figure 1 The retrospective reappraisal of datahood on a coherentist epistemology



Two sorts of „selfcorrection“ are especially germane to our deliberations regarding the coherentist standard of acceptability: the one relating to the initial „data“ (in our technical sense) that it makes use of, and the other to its mechanisms of plausibility-evaluation. Let us begin with the former, and consider the important idea of a retrospective reappraisal of data-sources. 

For present purposes, the crucial structural feature of the coherence analysis-is that it (1) begins with „raw“ data, (2) refines these into revised and „cooked“ (or duly processed) data, and then (3) deploys plausibility considerations in applying the coherence analysis to these processed data in the endeavor to extract from them those theses which, relative to these data, are qualified for acceptance-as-true. 

Now it is clear that as this process works its way along one can discover that the basic resource of our initial policies in the setting-up of data was defective, in that certain sorts of „initially recognized truth- candidates“ (= data) turn out in retrospect — in a systematic and regular way — to be found wanting. For example, if our „data“ consist in the reports of various witnesses, we may well discover that the reports given by certain of these are wrong so uniformly and regularly, that we can simply eliminate these „witnesses“ as a source of usable data. On the other hand, the analysis may — indeed, if all goes well, ought — to provide for the retrospective resubstantiation of our initial acceptance of data sources. 

The relevant aspect of the structure of the coherence analysis may be portrayed from this standpoint as in Figure 1. This circular process clearly embodies an element of „SELFcorrection“ in applications of the coherence analysis, in making room for a revised and reformed view of the initial data that afford the very materials of the analysis, arriving at this result in the light of the workings of the analysis itself. There is a cyclic movement, a closing of the cycle that requires a suitable meshing — a meshing process that should eventually retrovalidate (retrospectively revalidate) the initial criteria of datahood with reference to the results to which they lead.

1979, Erik Christopher Zeeman    


Catastrophe Theory
 | FOS: 1.1 Mathematics
In: Zeeman, Erik C. (1979). A Geometrical Model of Ideologies. In: Renfrew, C . & Cooke, K.L. Eds. (1979). Transformations: Mathematical Approaches to Culture Change. London, Oxford, Boston et.al.: Academic Press. S.468.

019 (1979) Erik C. Zeeman

FIGURE 20.3. The surface of ideologies.



The Shape of M

Suppose p is a parameter point on a conflict line. We translate the sociological notion of „conflicting opinions at p“ into the mathematical notion of bimodality of Fp; in other words, we assume Fp has two local maxima, and so M is two-sheeted over a neighborhood of p. Now globalize this notion by assuming that F is bimodal over neighborhoods N1, N2 of the two conflict lines L1, L2 , and is unimodal otherwise. We call N1, N2 the conflict regions; they are shown shaded in Figure 20.3. As we leave either side of a conflict region one of the two modes is preserved and the other has to disappear; we assume, further, that one of the modes is preserved on one side and the other on the other side. Therefore S has an S-shaped fold over N1. Meanwhile L2 terminates in the point K, and by Hypothesis 3 the only way an S-shaped fold can terminate is in a cusp (Markus 1977; Zeeman n.d.); therefore, S has a cusp singularity at K. Summarizing our assumptions and deductions into a single hypothesis we obtain Hypothesis 4.

The projection x: S → P has fold curves and a cusp singularity as shown in Figure 20.3. The reader will observe that we have drawn S in Figure 20.3 as if it were sitting in three dimensions rather than in the (2 + n)-dimensional space P x X. We justify this in a later section. Meanwhile notice that our discussion of folds and cusps is independent of the ambient space in which S happens to be sitting. The following deductions from Hypothesis 4 are also independent of the ambient space. M has two components M1 and M2, whose projections overlap on N1. The projection of M2 overlaps itself on N2. The complementary subsurface S-M has two components S1, S2 shown shaded in Figure 20.3, that project onto N1, N2; however, the components S1, S2 are sociologically meaningless because they represent saddle points of F, around which no opinion points cluster.

1979, Herman Kahn    


A cyclical cultural change
 | FOS: 1.3 Physical sciences
In: Kahn, Herman (1979). World economic development. Boulder, Colorado: Westview Press. S.37

023 (1979) Herman Kahn

Figure 1.2 A Modified „Popular“ Greek Theory of Political Cycles and Some Corresponding Intellectual Attitudes



In a fascinating study of „cyclical“ cultural change, Aristotle analyzed the constitutions and histories of Greek cities and put his results into a historical scheme that was similar to schemes known to almost every educated Greek, including Plato. Aristotle’s scheme superficially looks much like the scenarios of our macro-historians, but it is on a different historical principle and scale. His cycle is measured by generations, not by millennia. (We have modified his arguments slightly to suit our needs — see Figure 1.2.) Aristotle argued that a cycle starts with a Sacred King who has been selected or aided by the Gods. Many Greek cities were founded by heroic figures who became mythological — that is, Sacred Kings. Everybody either had or was supposed to have total faith in the Sacred King’s right to rule. All persons presumably believed in the divine origins of the system. The members of the King’s family or the priesthood eventually created a hereditary aristocracy that did not have the same total faith in the system as the people (perhaps because they observed the royal family too closely). They would not participate in the government unless they had a high degree of control over it. At this point, something resembling a theology is needed—a systematic attempt to rationalize a system that has lost some of its charisma and divine character. The theology may stem the tide, but it will not restore the original faith. An oligarchy of wealth, talent, or military capability soon takes over from the aristocracy. An oligarchy needs greater freedom, more options, and more pluralism. It cannot command the same degree of faith and unity as a king or a hereditary priesthood. The appropriate faith for it, therefore, is some kind of deism. The system is still authoritarian and its legitimation is still based upon sacred concepts, but it is much more secular.

The next stage occurs when people begin to ask „Why shouldn’t we take over the government ourselves?“ At this point, relativism seems to be the appropriate belief system. One person’s system, one person’s belief, one person’s judgments are, until tested or otherwise invalidated, as good as any other. But more than a remnant remains of the old traditions and customs. Respect for authority, faith, and loyalty to the old beliefs are still evident.

One big problem with democracy is that it may erode into anarchy — a total rejection of all authority, a blocking of any action because of a multitude of pressure groups who are unwilling to compromise or work together. The appropriate belief system is skepticism. More and more people, particularly among the elite, challenge everything. There is no automatic authority, no source of legitimacy except plebiscites and elections—and even these may be challenged. There is much debate, diversion of effort, selfindulgence, and self-seeking. Order, justice, efficiency, and effectiveness are at low ebb. The society is, by our previous definition, decadent — that is, because of psychological, political, or cultural changes, the society is no longer able to solve problems it could have coped with previously.

Such a society eventually turns from skepticism to cynicism. Everybody’s motives are suspect, and more and more people believe the worst of each other. Their cynicism is usually justified. Tyranny inevitably develops. (In Greek political theory, the tyrant was often the representative of the masses against the oligarchs.) Nothing can be accomplished unless force is used or threatened; people must be compelled to do the right thing or risk punishment or death. Serious public discussion of policy languishes. The leader may rely on others for advice and information, but no one can argue with the leader as a matter of right. He has a monopoly of force. The state, in fact, now represents nothing but force. Yet legitimacy, stability, and readily accepted rules are needed desperately. As Napoleon supposedly said, „We can do anything with bayonets except sit on them.“

This situation leads to despotism. A new leader eventually emerges, sometimes with a messianic message of ideological renewal. One can go back to the old days or start something radically different. In any case, the cycle is started again.

Aristotle concluded that no form of government was clearly best, not even democracy. It must be understood that in many countries, a step towards democracy is also a step towards anarchy, tyranny, or despotism — or at least revolution or revolutionary coups. Democracy for the sake of democracy is ideology, not judgment. All too often, Americans assume that democracy is always the best solution, everywhere, at all times, for all nations. Also, all too often our government tends to exert pressures to put this dubious axiom into practice. Yet in the last 200 years democracy has only worked and survived more or less continuously in a handful of countries: Scandinavia, Holland, the United Kingdom, the United States, Canada, Australia, New Zealand, and Switzerland.

1979, Benjamin I. Page   Calvin C. Jones


A full non-recursive voting model
 | FOS: 5.6 Political Science
In: Page, Benjamin I./ Jones, Calvin C. (1979). Reciprocal Effects of Policy Preferences, Party Loyalties and the Vote. In: The American Political Science Review, 1979. Nr. 73. S.1086.

046 (1979) Benjamin I. Page: Calvin C. Jones

Figure 9. Full non-recursive voting model with overidentified structural equations, 1972



Past studies have offered diverse estimates of the role of policy preferences, party loyalties, candidate personalities and other factors in voting decisions. Most have postulated recursive (that is, one-way) causal relationships among the central variables. This study specifies a non-recursive simultaneous equation model and estimates its parameters for the 1972 and 1976 elections using CPS data. The estimates differ markedly from those of simple recursive models. Policy preferences appear to have much more influence on voting decisions, and party attachments much less, than was previously thought. Candidate evaluations strongly affect voters‘ perceptions of closeness to candidates on policy issues. Party identification may be influenced by short-term factors. Differences between 1972 and 1976 reflect the issue-oriented McGovern candidacy. Simultaneous equation models offer no cure-all; in the absence of accepted theory many specifications are open to controversy. But future research must take account of reciprocal causal paths.

[…]

Nor is The Changing American Voter immune to this criticism (Nie, Verba and Petrocik, 1976). Comparisons between groups or candidates or over time are also subject to error because the biases in estimates are not necessarily constant from group to group or candidate to candidate or year to year. We have made the sweeping claim that virtually all studies of policy orientations, partisanship and the vote-certainly including the primitive efforts reported in Figures 2 through 5 — are subject to simultaneity bias and are potentially quite misleading. It is fair enough to ask whether we have anything constructive to add to this work of destruction. The most appropriate way to handle the problem, we would argue, is through the use of non-recursive, simultaneous equation models which explicitly allow for the possibility of causal processes operating in both directions between variables (Johnston, 1972; Theil, 1971; Hanushek and Jackson, 1977; Duncan, 1975). We can begin to apply such techniques to the voting problem by specifying the central set of variables which we believe to be mutually endogenous — that is, which reciprocally affect each other: comparative candidate evaluations, relative policy distance between the voter and candidates, and current subjective partisanship, We will continue to treat measures of reported vote as direct consequences of overall candidate evaluations.

[…]

Among the most noteworthy aspects of Figure 9 is the nearly total absence of any effect of party attachments upon the other two endogenous variables. Our estimates reveal that in 1972 — quite unlike 1976 — party loyalties played no part in the formation either of voting decisions or perceptions of closeness to the candidates on policy matters. McGovern dramatically dissociated himself from the Democratic party’s mainstream; and, by the same token, the central core of the Democratic party abandoned McGovern to his own devices. Party per se had no independent effect at all on the vote. Furthermore, the absence of a significant effect of policy distances upon partisanship, together with the very strong impact of policy distances upon intended vote, indicates that the policy choices around which voting decisions revolved (the Vietnam War, urban unrest, campus disturbances, alternative life styles) cut across the grain of older party cleavages.

There was, on the other hand, apparently some effect of intended votes upon partisanship. That is, although party loyalties did not affect votes, intended votes did affect partisanship — presumably because some Democratic defectors to Nixon felt their Democratic affiliations to be weakened. There are, however, some doubts about this finding. In spite of the moderate size of this coefficient (.29), the conventional significance test (which is asymptotically valid for two- and three-stage least squares estimation) indicates that it is not significantly different from zero at the .05 confidence level. Examination of the intermediate two-stage calculations reveals a high degree of collinearity between the „decontaminated“ versions of the policy distance and candidate evaluations variables. This results in high standard errors of estimates for the respective coefficients (i.e., lowers their precision), which substantially raises the difficulty of disentangling the independent effects for these two variables. Since we presently lack any satisfactory way to deal with multicollinearity in the second stage of two-stage least squares, it is necessary to reserve judgment on the significance or insignificance of the 1972 impact of intended vote upon partisanship.

1980, Karl W. Deutsch   Bruno Fritsch


Komplexitätsreduktion
 | FOS: 5.6 Political Science
In: Deutsch, Karl W./ Fritsch, Bruno (1980). Zur Theorie der Vereinfachung: Reduktion von Komplexität in der Datenverarbeitung für Weltmodelle. Berlin: Athenäum. S.21.

037 (1980) Karl W. Deutsch

Figur 3 Komplexitätsreduktion und Komplexitätsaufbau: Ein Zyklus von Datengewinnung und Datenverarbeitung



Obwohl unser Wissen über die Welt ständig zunimmt, reduziert sich die Komplexitat der für unser Überleben relevanten Interaktionen nicht. Dieses Phänomen steht nur scheinbar im Widerspruch zu unserer Hypothese, wonach Abbau von Komplexität nur durch Zunahme an Wissen möglich ist. Es darf nämlich nicht übersehen werden, daß mit der zunehmenden Menge der uns möglichen Interaktionen mit der Umwelt auch der Umfang ihrer möglichen Komplexität und Relevanz wächst. Indem wir auch bei unvollständigem Wissen in einem offenen System, d. h. bei freiem Energie- und Informationszufluß, Handlungen geplant und / oder ungeplant vollziehen, initiieren wir — zumal auf dem heutigen hohen Aktivitätsniveau — immer wieder neue Prozesse und Synergismen, die durch unser Wissen jeweils erst noch aufgearbeitet werden müssen, so daß der Abbau und
Aufbau von Komplexität (d. h. der Zunahme oder Abnahme unseres Wissens über die unser Überleben bestimmenden Prozesse) in Kombination mit einem Entwicklungstrend zyklisch verläuft und nicht vektoriell in Richtung „absoluten Wissens“ und damit total reduzierter Komplexitat.

[…]

Auf der nachstehenden Seite werden die wichtigsten Elemente dieses Zyklus dargestellt. Gehen wir vom internationalen System aus: Man kann sich vorstellen, daß dieses System Signale (Nachrichten oder „messages“) sendet, die von den verschiedenen Datenzubereitungsstellen generiert werden. Diese Signale gelangen über eine Vielzahl von Kanälen an die Öffentlichkeit und werden auf die verschiedenste Weise interpretiert, mehr oder weniger genau weitergegeben, kommentiert, verarbeitet, revidiert usw. Diese Einwirkungen auf die Signale kann man als das Rauschen oder im biologischen Sinne als Mutation betrachten. Erst dann gelangt die durch Rauschen „angereicherte“ (aber oft in anderer Hinsicht de facto reduzierte) Information auf einen Filter. Dieser Filter ist so angelegt, daß er gewisse Daten ausscheidet (Selektion) und andere zur Informationsverarbeitung durchläßt. Welche Daten zur Weiterverarbeitung selektiert und welche ausgeschieden werden, hängt einerseits von der Problemstellung ab und zum andern von den zur Anwendung gelangenden Datenverarbeitungsverfahren.

1980, James R. Averill    


Theorie and model of emotion
 | FOS: 5.1 Psychology
In: Averill, James R. (1980). A constructivist view of emotion. In: Plutchik, Robert/ Kellerman, Henry (Hrsgg.)(1980). EMOTION · Theory, Research, and Experience. Volume 1 Theories of Emotion. New York: Academic Press. S.330.

077 (1980) James R. Averill

FIGURE 12.1. A model of emotion, depicting the sociological (top half) and psychological (bottom half) levels of analysis.



If we reject the idea that the emotions can be reduced to a fundamental few on the basis of biological criteria, we are still left with the problem of how to impose some order on the diversity of emotional phenomena. In the present section, I will approach this problem through the use of idealized models or paradigms. These paradigms describe the mechanisms that help distinguish certain classes of emotion; that is, they do not purport to represent particular
emotions, nor do they imply that some emotions are more fundamental than others (although some may approximate the ideal of a paradigm more than do others).

Figure 12.1 presents, in block diagram, a model of emotion. I will use this diagram to explicate several different paradigms of emotion. But first, let me explain some of the general features of the model.

It will be noted that Figure 12.1 is symmetrical above and below the horizontal axis. That is, if the diagram were folded at the midline, the top and bottom halves would coincide. This is to illustrate the formal congruence between the sociological (top half) and psychological (bottom half) determinants of emotion. Another thing to note about Figure 12.1 is that the arrows do not necessarily represent causal sequences in the traditional sense. For example, social norms do not „cause“ specific appraisals or response tendencies, as one event might be said to cause another event. Rather, social norms serve as standards against which responses can be compared and, if a discrepancy is detected, appropriate adjustments made.

The cognitive and physiological processes that help mediate emotional behavior are represented by a single „black box“ along the horizontal axis. Included within this black box are the appraisal and monitoring functions discussed earlier.

Let us now examine the upper half of Figure 12.1 in more detail. Two types of social variables are of major importance for the understanding of emotional syndromes: social norms and defenses. As used here, the term social norms“ refers to demands or expectancies placed on the individual by society. Social norms may influence behavior in either of two ways: (a) The immediate prospect of positive and / or negative sanctions may induce compliance; (b) during the process of socialization, the individual may adopt as his own the relevant attitudes and beliefs of society, so that the expected behavior becomes „second nature,“ so to speak.

Sometimes, the practices fostered by society are detrimental to the interests of the individual (e.g., the person is encouraged to face the dangers of combat, to abstain from pleasurable activities, etc.), or, what amounts to much the same thing, equally compelling norms may call for incompatible responses. In such cases, the conflict may be resolved by another set of normative structures, which I have labeled „social defenses.“ These social defenses are analogous to psychological defense mechanisms, as described below.

The bottom half of Figure 12.1 represents the psychological level of analysis. Through a past history of conditioning and learning, a person develops a set of expectancies („personal norms“) about his or her own behavior. Some of these expectancies may be so strong that the individual cannot help but respond under given circumstances, in which case the response may be interpreted as a passion. But this is not the only source of passion on the individual level. When two or more expectancies are incompatible, intrapsychic conflict results. Psychological defense mechanisms allow a resolution of the conflict, for example, by symbolically transforming the conflicted response and divorcing it from the self-as-agent.

For the well-socialized individual, personal norms reflect social norms, and personal defenses are congruent with social defenses. In cases where the personal and social levels do not match, the resulting behavior is liable to be labeled „hysterical,“ which means simply that it is idiosyncratic to the individual and not standard within the social group. Implicit in the above discussion is a distinction between two paradigms of emotion, which I shall call impulsive and conflictive. After describing each of these paradigms in further detail, I will then present a third paradigm to characterize what I have called transcendental emotional syndromes (Averill, 1976).

1981, Peter Checkland    


Systems, classes and beyond (transcendental)
 | FOS: 5.2 Economics and business
In: Checkland, Peter B. (1981 / 1988). Systems thinking, systems practice. Chichester, New York: John Wiley & Sons. S.97.

020 (1981) Peter B. Checkland

Figure 4. Five classes of system which make up a systems map of the universe. We may — investigate, describe, learn from, natural systems — create and use designed systems — seek to 'engineer' human activity systems



Let us start with the physical systems which apparently make up the universe. These range from the subatomic systems of atomic nuclei as described by physics, through the physical framework of this and other planets and the living systems observed on earth, to galactic systems at the other extreme. All these are natural systems, systems whose origin is in the origin of the universe and which are as they are as a result of the forces and processes which characterize this universe. They are systems which could not be other than they are, given a universe whose patterns and laws are not erratic. There are also many other observed entities which are similar to natural systems in respects other than this last one: they could be other than they are. These are the systems which are the result of conscious design. They are the designed physical systems which man has made, the class stretching from hammers via tram cars to space rockets. They are designed as a result of some human purpose, which is their origin, and they exist to serve a purpose, even though, as in the case of an artist’s painting, for example, the purpose may be hard to define explicitly. But man’s design capability is not restricted to the construction of physical artefacts. We also see in the world a large number of what may be described as designed abstract systems such as mathematics or poems, or philosophies. They represent the ordered conscious product of the human mind. They are in themselves abstract systems, though thanks to previous successful design activity they can now be captured in designed physical systems such as books, films, records, blue prints. Again they will exist as a result of a positive act related to some objective — elucidation, maybe, or the enlargement of knowledge, or an inner urge to express the inexpressible. The human act of design is itself an example of a fourth possible system class: the human activity system. These are less tangible systems than natural and designed systems. Nevertheless, there are clearly observable in the world innumerable sets of human activities more or less consciously ordered in wholes as a result of some underlying purpose or mission. At one extreme is a system consisting of one man wielding a hammer, at the other the international political systems needed if life is to remain tolerable for the human race on this small planet. The range covered by this class of system is very large indeed. What every member of the class has in common is that it consists of a number of activities linked together as a result of some principle of coherency. This will as a minimum consist of the observer’s interest in viewing the set as a whole. For example, a dietitian might study the human activity system which consists of ‚the eating habits of the octogenarians of Basingstoke‘, in which case the people whose habits are studied will probably be unaware of their involvement with this system. Or an observer might take as a system a football team seeking to win a championship; here the team members will themselves know of their involvement as crucial to the system’s purpose, and will in fact have their own definitions of the purpose or mission which links the system’s activities and marks its boundary. The components of all such systems I take to be human activities. In the initial version of the typology (Checkland, 1971) these were combined with the natural and designed systems which will inevitably be closely linked to the human activity described—for example a ‚taking-leisure system‘ will consist of human activities involving various natural and designed physical and/or abstract systems such as playing fields, cricket bats, rules of games, etc. The research work has shown, however, that it is better to restrict the definition of the human activity system to the activities themselves, naming and describing other associated systems if appropriate at the time.

Beyond natural, designed physical, designed abstract, and human activity systems there has to be a category to include the systems beyond knowledge. Following Boulding we may term these transcendental systems. This completes a simple systems map of the universe which, as far as system classes is concerned, is itself complete. It is summarized in Figure 4. Any whole entity which an observer sees as a figure against the background of the rest of reality, may be described either as a system of one of these five classes or as a combination of systems selected from the five. Pursuing systems thinking becomes a matter of ascertaining the properties of systems of each class, and the way in which they combine and interact to form wider systems showing emergent properties. The long-term programme of the systems movement may be taken to be the search for conditions governing the existence of emergent properties and a spelling out of the relation between such properties and the wholes which exhibit them.

1982, Rodrigo Jokisch   Helmut Lindner


Technologischer Wandel in Gesamtdarstellungen
 | FOS: 5.3 Sociology
In: Jokisch, Rodrigo & Lindner, Helmut (1982). Technologischer Wandel in Gesamtdarstellungen. In: Jokisch, Rodrigo (Hrsg.)(1982). Techniksoziologie. Frankfurt am Main: Suhrkamp. S.172.

081 (1982) Rodrigo Jokisch: Helmut Lindner

Abbildung 1b: Selbststeigerungsmechanismen und Hybride Institutionen



Bei der Beschreibung der Selbststeigerungsmechanismen und Hybriden lnstitutionen wurde besonderer Wert auf die Wechselwirkung gelegt. Denn über einen längeren Zeitraum werden einseitige Verknüpfungen häufig, vielleicht sogar immer zu Wechselwirkungen, und es ist wohl am besten, die Begriffe wie Ursachen oder Auswirkung im strengen Sinne zu vermeiden. So betont Melvin Kranzberg bei den für die Industrielle Revolution charakteristischen Erfindungen die Notwendigkeit einer dynamischen Wechselwirkung: „The great engineering inventions [ … ] would have been impossible without the dynamic interplay of a great many forces which brought together social stimulus, technical level, economic need, and inventive genius.« Alexander Gerschenkron bemerkt zur Wechselwirkung von wirtschaftlichen und nichtwirtschaftlichen Faktoren: „Once the existence of circular effects was granted so that, say, economic factors influenced political factors and the latter in turn affected the economy, the assertion of ›last analysis‹ or ›last instance‹ became impossible. There is no ›first‹ and no ›last‹ in a circle, particularly if the economic reality presents the observer with a multiplicity of intersecting circles and circles within circles.“

2. Formaler Aufbau des Modells

Es folgen nun einige für das Verständnis der Abbildungen 1b und 2 notwendige Erklärungen:

a) Das morphologische Modell stellt durch die Reduzierung der Interdependenzen auf wenige Beziehungen und der Faktoren auf eine geringe Anzahl eine starke Idealisierung der ›Realität‹ dar, die in unserem Falle aus Beschreibungen der Industriellen Revolution in der Literatur besteht.

b) Die fünf Bereiche (Kultur, Gesellschaft, Politik, Wirtschaft, Technik) werden nicht in ihrer Gesamtheit dargestellt, sondern nur im Hinblick auf die Industrielle Revolution.· Der Bereich Technik wird als Bezugsgröße genommen und die übrigen Bereiche werden auf diesen Bereich hin gewichtet. So ergibt sich U. E. eine bestimmte Reihenfolge, die bereits im Handlungssystem ausgeführt wurde. Für diese Rangfolge lassen sich folgende Gründe anführen:

  1. eine Gewichtung nach solchen Institutionen, die jene Ressourcen und Vergünstigungen kontrollieren, an denen teilzuhaben andere zum Zwecke der Befriedigung ihrer Neigungen und Bedürfnisse bestrebt sind:
  2. eine Reihenfolge nach der Langlebigkeit resp. Kurzlebigkeit der Phänomene: innerhalb des Bereiches Technik finden eher Änderungen statt, während im Bereich der Kultur sich
    z. B. die Werte verhältnismäßig langsam ändern.

 

1982, Ernst Terhardt    


About the impact of computers on music
 | FOS: 6.4 Art (arts, history of arts, performing arts, music)
In: Terhardt, Ernst (1982). Impact of computers on music. An outline. In: Minsky, Marvin Lee (1982). Music, Mind and Meaning. The Neuropsychology of Music. New York: Springer Science+Business Media. S.357.

093 (1982) Ernst Terhardt

Fig. 1. Cybernetic model of music realization.



Once the conceptual distinction between the three domains of musical reality has been understood and accepted, the process of music realization can be described schematically as in Fig. I. The essential information flow between the three domains is shown. The schematic illustrates that music realization is not a straightforward process but a complex mutual interaction of categorical (symbolic, or verbal), auditory, and acoustic representations of music. It is obvious that the process comprises, among others, the following psychophysical items:

  • the technique of symbolic representation;
  • visual and other non-auditory perception;
  • auditory perception;
  • learning and memorizing;
  • evolution and application of theoretical concepts;
  • motor control of the musical instrument;
  • the physics of the musical instrument;
  • the room acoustics involved in auditory feedback.

Although each of these psychophysical items on its own part stands for a number of complex problems which are by no means sufficiently understood as yet, the whole realization process i.e. composition and performance of music, obviously works quite well. This is due to the strong coupling between the three domains through feedback loops provided by the human sensory and motor organs. It is particularly this system of feedback loops which, on one hand, guarantees proper functioning of the whole system if used in its natural way, on the other hand makes scientific understanding of the process so difficult. From communication- and system-theory it is well known that almost nothing can be said about the functioning of a system composed of subsystems containing feedback loops, if the functional parameters of only one or the other subsystem are known. Rather, quite confusing conclusions about the function of the whole system may be drawn from such a limited knowledge. This probably is the ultimate reason why many (most?) musicians unconsciously prefer largely to ignore the psychophysics of what they are actually doing, rather than to attempt to operate on the basis of incomprehensive knowledge. They can hardly be blamed for that.

This cybernetic consideration of the realization process may also throw some light on the problem of finding the objective parameters which characterize the musical quality of a musical instrument. In Fig. I, the instrument is represented by the box ‚acoustical realization‘. Since it is just one part of a complex system containing several feedback loops, almost nothing can be said about the instrument’s musical value unless its physical parameters are considered in combination with all the other system parameters. However, while the physical parameters of a musical instrument can be determined quite precisely, several other parts of the whole system have been explored only to a limited extent as yet. A lot of experimental and theoretical research remains to be done. Fortunately, as already mentioned, the whole process, i.e. the conventional way of composing and performing music, works quite well, in spite of considerable gaps in our psychophysical insight. This is no longer true, however, when the use of computers in music realization is considered.

1985, Aloisius H. Louie    


The natural system as a set of qualities
 | FOS: 1.6 Biological sciences
In: Louie, Aloisius H. (1985). Categorical System Theory. In: Rosen, Robert J. ((Hrsg.)(1985). Theoretical Biology and Complexity. Three Essays on the Natural Philosophy of Complex Systems. Orlando, Florida: Academic Press. S.131.

070 (1985) Aloisius H. Louie

- -



Having gone through the preceding discussions, we can now simply say that a natural system is a set of „qualities“ on which different definite relations can be imputed. A perceptible quantity of a natural system is obviously what we call an observable, and relations among them are linkages. The study of natural systems is precisely the specification of its observables, and the characterization of the manner in which they are linked. Thus it becomes clear that the category S we looked at in Section III is the appropriate mathematical (formal) tool to be used to study (static models of) natural systems. Next we have to recognize that (almost by definition) natural systems are dynamic objects and their changes cause a modification in our percepts. Most of the changes in natural systems are of course from their mutual interactions, and in fact the changes in our percepts (these are „observables“) can be considered as the result of interactions with other natural systems. So if an interaction between two natural systems causes some change, then the vehicle responsible for the change in one is an observable of the other. This leads us to the discussions of meters and dynamics, and dynamical systems in general, of Section IV. So the category D can be used to model the dynamical aspects of natural systems. We can express these considerations succinctly in a diagram:

[diagram]

In this section we shall be concerned with these models of natural systems. The categories S and D will be amalgamated into the „category of natural systems“, denoted by N.

1985, Robert J. Rosen    


Encodings Between Natural and Formal Systems
 | FOS: 1.6 Biological sciences
In: Rosen, Robert J. (1985 / 2012). Anticipatory Systems Philosophical, Mathematical, and Methodological Foundations. New York, Dordrecht, Heidelberg, London: Springer. S.72.

078 (1985) Robert J. Rosen

Fig. 2.1



In the preceding two chapters, we have discussed the concepts of natural systems, which belong primarily to science, and formal systems, which belong to mathematics. We now turn to the fundamental question of establishing relations between the two classes of systems. The establishment of such relations is fundamental to the concept of a model, and indeed, to all of theoretical science. In the present chapter we shall discuss such relations in a general way, and consider a wealth of specific illustrative examples in Chap. 3 below.

In a sense, the difficulty and challenge in establishing such relations arises from the fact that the entities to be related are fundamentally different in kind. A natural system is essentially a bundle of linked qualities, or observables, coded or named by the specific percepts which they generate, and by the relations which the mind creates to organize them. As such, a natural system is always incompletely known; we continually learn about such a system, for instance by watching its effect on other systems with which it interacts, and attempting to include the observables rendered perceptible thereby into the scheme of linkages established previously. A formal system, on the other hand, is entirely a creation of the mind, possessing no properties beyond those which enter into its definition and their implications. We thus do not “learn” about a formal system, beyond establishing the consequences of our definitions through the application of conventional rules of inference, and sometimes by modifying or enlarging the initial definitions in particular ways. We have seen that even the study of formal systems is not free of strife and controversy; how much more strife can be expected when we attempt to relate this world to another of a fundamentally different character? And yet that is the task we now undertake; it is the basic task of relating experiment to theory. We shall proceed to develop a general framework in which formal and natural systems can be related, and then we shall discuss that framework in an informal way.

The essential step in establishing the relations we seek, and indeed the key to all that follows, lies in an exploitation of synonymy. We are going to force the name of a percept to be also the name of a formal entity; we are going to force the name of a linkage between percepts to also be the name of a relation between mathematical entities; and most particularly, we are going to force the various temporal relations characteristic of causality in the natural world to be synonymous with the inferential structure which allows us to draw conclusions from premises in the mathematical world. We are going to try to do this in a way which is consistent between the two worlds; i.e. in such a way that the synonymies we establish do not lead us into contradictions between the properties of the formal system and those of the natural system we have forced the formal system to name. In short, we want our relations between formal and natural systems to be like the one Goethe postulated as between the genius and Nature: what the one promises, the other surely redeems.

Another way to characterize what we are trying to do here is the following: we seek to encode natural systems into formal ones in a way which is consistent, in the above sense. Via such an encoding, if we are successful, the inferences or theorems we can elicit within these formal systems become predictions about the natural systems we have encoded into them; consistency then means that these predictions will be verified in the natural world when appropriately decoded into linkage relations in that world. And as we shall see, once such a relation between natural and formal systems has been established, a host of other important relations will follow of themselves; relations which will allow us to speak precisely about analogy, similarity, metaphor, complexity, and a spectrum of similar concepts.

If we successfully accomplish the establishment of a relation of this kind between a particular natural system and some formal system, then we will obtain thereby a composite structure whose character is crudely indicated in Fig. 2.1 below: 

In this figure, the arrows labelled “encoding” and “decoding” represent correspondences between the observables and linkages comprising the natural system and symbols or propositions belonging to the formal system. Linkages between these observables are also encoded into relations between the corresponding propositions in the formal system. As we noted earlier, the rules of inference of the formal system, by means of which we can establish new propositions of that system as implications, must be re-interpreted (or decoded) in the form of specific assertions pertaining to the observables and linkages of the natural system; these are the predictions. If the assertions decoded in this fashion are verified by observation; or what is the same thing, if the observed behavior of the natural system encodes into the same propositions as those obtained from the inferential rules of the formal system, we shall say that (to that extent) the relation between the two systems which we have established, and which is diagrammed in Fig. 2.1, is a modeling relation. Under these circumstances, we shall also say that the formal system of Fig. 2.1, modulo the encoding and decoding rules in question, is a model of the natural system to which it is related by those rules.

1993, Kenyon B. De Greene    


Systems and Policymaking
1 | FOS: 5.7 Other social sciences
In: De Greene, Kenyon B. (1993). A Systems-Based Approach to Policymaking. New York: Springer Science+Business Media. S. 10.

001 (1993) Kenyon B. De Greene

Figure 1.1. Basic information-decision-action-feedback model modified to show the importance of the emotions and of unexpected sources of uncertainty.



It is sometimes said that men are rational and women emotional, and that business is rational whereas concern for the natural environment is emotional. Most readers today would probably reject such oversimplified, generalized, and erroneous statements. As discussed earlier, except as an abstraction, there can be no purely rational person, model, policy, or decision. The detached, objective person who carefully evaluates the pros and cons of an issue, assesses and weighs the risks, and makes a rational choice among alternatives is a myth.

Figure 1.1 expands the familiar information-decision-action-feedback model. Note the interactions among the Feelings and Emotions, Perception, and Decision blocks. Note also that uncertainty characterizes not only information input as is recognized by the decision-analysis and decision-support schools. Even more important is consequences-of-action uncertainty, an area of study that has been poorly defined. For example, will an action lead to crossing a critical threshold, precipitating undesirable structural change?

The cognitive subsystem of a person is not independent of the emotional subsystem. At the level of physiology, the nervous, endocrine, immune, cardiovascular, and respiratory sub-subsystems mutually support and reinforce one another. At the level of individual psychology, cognition and emotion are inextricable aspects of personality. Both stem from the interaction of genetic, congenital, and postpartum forces. The personality of an adult is an outgrowth of the kinds of (including the lack of) interactions with parents, siblings, members of the extended family, schoolmates and playmates, nation(s), neighborhood(s), social- and natural-environment(s), races, cultures and religions, status or class, values, wealth, epoch of upbringing, sheer luck, and so on. Each person possesses various needs, and the dynamics of personality are shaped by the gratification or frustration of these needs and by conflict among needs. Personality has both conscious and unconscious (below the level of awareness) aspects. In the language of systems, the development of personality reflects many past bifurcation points.

1994, Gerhard Roth    


Ist der Wille frei?
 | FOS: 6.3 Philosophy ethics and religion
In: Roth, Gerhard (1994 / 1997). Das Gehirn und seine Wirklichkeit. Kognitive Neurobiologie und ihre philosophischen Konsequenzen. Frankfurt am Main: Suhrkamp. S.305.

096 (1994) Gerhard Roth

Abb. 43: Schema zur Steuerung willkürmotorischer Handlungen. Im limbischen System unbewußt verlaufende Prozesse wirken auf den motorischen »Planungsapparat« im engeren Sinne ein, der seinerseits teils bewußt (präfrontaler Cortex), teils unbewußt (Basalganglien, laterales Kleinhirn) arbeitet. Dieser Apparat wirkt auf die prämotorischen Cortexareale ein, die ihrerseits den Motorcortex kontrollieren, der dann im Zusammenhang mit dem medialen Kleinhirn (Vestibulo-Cerebellum, Spino-Cerebellum) die aktuelle Bewegung steuern. Der subjektiv erlebte »Willensakt« tritt offenbar beim Übergang der Aktivität vom prämotorischen zum motorischen Cortex auf.



Der Begriff der Willensfreiheit spielt in der Diskussion um die Autonomie des Geistes gegenüber dem Gehirn eine besondere Rolle und ist eine Herausforderung an jeden neurobiologischen Physikalismus, sei er reduktionistisch oder nicht-reduktionistisch. Beim Begriff der Willensfreiheit gehe ich von der üblichen Vorstellung aus, daß ich mich entschließe, etwas zu tun, zum Beispiel gleich von meinem Stuhl aufzustehen oder heute abend ins Konzert zu gehen. Dies ist nach herkömmlicher Meinung ein mentales Ereignis, das als Willensakt auf das Gehirn einwirkt. Ich habe dabei die Empfindung, etwas zu tun, weil ich es so gewollt habe; der Willensakt ist der Verursacher der Handlung. Von meiner freien Willensentscheidung bin ich überzeugt, obwohl ich überhaupt nicht das Gefühl habe, ich hätte eine rein willkürliche Entscheidung getroffen, so wie wenn ich darum gewürfelt hätte, ob ich heute ins Konzert gehe oder nicht. Vielmehr kann ich in aller Regel gute Gründe für mein Tun angeben, und zwar unmittelbare Gründe, z. B. solche, die mich bewogen haben, genau dieses Konzert zu besuchen, als auch mittelbare Gründe, die damit zu tun haben, daß ich die im Konzertprogramm angegebenen Komponisten und Kompositionen und / oder das Orchester und den Solisten besonders mag, als auch noch indirektere, die mit der Tatsache zu tun habe, daß ich in einer musikliebenden Familie aufgewachsen bin. Man kann bei jeder Handlung die Kette dieser Gründe zurückverfolgen. Bei einigen Stationen dieser Kette wird sich herausstellen, daß man keine Wahl hatte, bei den meisten jedoch, daß man dies im Prinzip auch anders hätte machen können, aus guten Gründen aber so gemacht hat. Manchmal sind die Gründe sehr subtil, die Entscheidung geht hin und her, und man entscheidet sich schließlich mit Bauchschmerzen oder weil das Zögern einfach ein Ende haben muß.

Dies bedeutet: Bei der Willensfreiheit geht es nicht um die völlig willkürliche Entscheidung zwischen zwei gleichberechtigten Alternativen. Dies gilt auch für die meisten unserer Handlungen, bei denen gar kein ausdrücklicher Willensakt vorausging und die wir »so nebenbei« tun. Wir müssen einen separaten Willensakt überhaupt nicht fordern, wie dies viele Philosophen tun, wenn wir von Willensfreiheit sprechen. Vielmehr geht es um das Gefühl, daß die Entscheidung letztlich aus mir selbst kommt und nicht von außen aufgezwungen wurde. Die Frage ist nun: Spiegelt dieses Gefühl eine tatsächliche Entscheidungsfreiheit wider, oder ist sie eine Illusion?

Die Hirnforschung hat die Frage, was im Gehirn abläuft, bevor und während wir Bewegungen und Handlungen willentlich ausführen, gründlich untersucht, vor allem im Zusammenhang mit Erkrankungen der Motorik (Abb. 43). Willkürbewegungen wie Schreiben, Autofahren oder Klavierspielen sind zweckbestimmt und größtenteils erlernt. Ihre Ausführung verbessert sich mit zunehmender Übung. Dabei gilt: Je besser sie ablaufen, desto weniger ist eine bewußte Steuerung nötig; oft stört Bewußtsein sogar. Bei der Willkürmotorik sind folgende drei Gebiete der Großhirnrinde wichtig: Der primäre motorische Cortex (MC) steuert einzelne Muskeln und Muskelgruppen bei der Willkürbewegung, und der prämotorische Cortex (PMC) das komplexere Zusammenspiel von Muskeln und Gelenken. Der supplementär-motorische Cortex (SMA) kontrolliert komplexe Bewegungsabläufe und deren Planung. Diese motorischen Areale sind teils hierarchisch angeordnet, d. h., das SMA beeinflußt den PMC und dieser den MC, als auch parallel, indem sie separate Bahnen zu den subcorticalen motorischen Zentren haben.

2010, Niklas Luhmann    


Analytisches Modell des politischen Systems
 | FOS: 5.3 Sociology
In: Luhmann, Niklas (2010 / 2015). Politische Soziologie. Frankfurt am Main: Suhrkamp. Kap. 12.

029 (2010) Niklas Luhmann

-



Im einzelnen unterscheidet nun unser Modell, wie die Skizze verdeutlichen soll, das politische System (im Rechteck) von seiner Umwelt (in Kreisen). Zum politischen System gehören die durch eine nicht ganz eindeutige Grenzlinie getrennten Teilsysteme Politik und Verwaltung und ferner die damit korrespondierenden Publikumsrollen, die danach geteilt sind, ob sie den Verkehr mit der Politik oder den Verkehr mit der Verwaltung regeln. Die vertikale Achse des politischen Systems bezeichnet also eine bis ins Publikum einschneidende Trennung von Politik und Verwaltung, die horizontale Achse dagegen eine Trennung der an fremden Interessen orientierten, zumeist hauptberuflichen Arbeits- oder Leistungsrollen in Politik und Verwaltung von den an eigenen Interessen orientierten, nur gelegentlich wahrgenommenen politisch-administrativen Rollen des Publikums. Stellt man diese beiden Einteilungsgesichtspunkte einander gegenüber, so ergeben sich vier Kombinationsmöglichkeiten, die sich als Teilsysteme des politischen Systems deuten lassen: hauptberufliche Politik, hauptberufliche Verwaltung, politikbezogene Publikumsrollen und verwaltungsbezogene Publikumsrollen. Die Grenzen zwischen den einzelnen Teilsystemen müssen als variabel gedacht werden je nachdem, welches Gewicht den einzelnen Teilen im Prozeß der Reduktion von Komplexität zukommt. Das Modell hat daher Platz für sehr verschiedene Ausführungen. Es kann zum Beispiel Fälle geben, in denen die hauptberuflichen Rollen die Publikumsrollen so zurückdrängen, daß ihnen kaum noch Bedeutung bleibt. Es wird dann typisch notwendig sein, daß die Funktion der Publikumsrollen, zum Beispiel Artikulation von Interessen, in Politik und Verwaltung miterfüllt werden muß. Sehr oft findet man namentlich in Entwicklungsländern Beispiele dafür, daß die Verwaltungsbürokratie ein erhebliches Übergewicht besitzt und die Politik auf ein Minimum reduziert. Auch das führt dazu, daß das expansive Teilsystem sich mit den Funktionen des zurückgedrängten belasten und vielleicht überlasten muß, daß also die Verwaltung in diesem Falle legitime Macht nicht ohne weiteres voraussetzen kann, sondern durch Übernahme der politischen Funktion mit aufbauen muß. Ein drittes Beispiel für solche Verschiebungen mit der Folge, daß Struktur und Funktion nicht mehr in Einklang stehen, wäre der Fall, daß die Interessenvertretung sehr viel größere Bedeutung besitzt als die Wahl. Auch dann ist typisch damit zu rechnen, daß die Interessen auf dem Weg zu den zentralen Entscheidungsorganen des Systems im Prozeß der Vertretung selbst generalisiert werden müssen, daß also die Interessenvertretung jene Funktion miterfüllen muß, die sie der politischen Wahl nicht läßt. Die Differenzierung der Umwelt, die das Modell berücksichtigt, entspricht seiner Innendifferenzierung. Das Modell geht mithin von einer Korrespondenz zwischen Innendifferenzierung und Umweltdifferenzierung aus. Das politische System sieht seine Umwelt nicht »objektiv« (das würde heißen übermäßig komplex), sondern »subjektiv«, nämlich so, wie es seine interne Struktur der Informationsverarbeitung vorzeichnet.[4] Subjektiv heißt natürlich nicht willkürlich. Der Umweltentwurf muß Sinn geben, muß das System in die Lage versetzen, reale Komplexität zu reduzieren, weil sonst das System nicht sinnvoll und selbsterhaltend handeln kann. Die Hauptunterscheidung in der Umwelt unseres Modells stellt darauf ab, ob die Umweltrollen durch Persönlichkeiten mit dem politischen System verknüpft sind (und es auf diese Weise beeinflussen können) oder nicht. Fremde politische Systeme sind normalerweise vollexterne Systeme, es sei denn, daß das politische System, von dem wir ausgehen, kein souveräner Staat ist. Die Umwelt der eigenen Gesellschaft des politischen Systems reicht dagegen mehr oder weniger in das politische System hinein dadurch, daß die Rollen des politischen Systems von Trägern wahrgenommen werden, die auch andere gesellschaftliche Rollen ausführen müssen. Dies ist das schon oft erwähnte Problem der »gesellschaftlichen Ausdifferenzierung« des politischen Systems. Je stärker diese Umweltrollen mit Rollen im politischen System verknüpft sind, desto geringer ist die Ausdifferenzierung, desto diffuser ist die Struktur der Gesellschaft. Je wirksamer die Schranken sind, die in den einzelnen Personen politisch-administrative Rollen von anderen trennen, desto weiter geht die Ausdifferenzierung, desto autonomer kann das politische System operieren. [5]

1920

Jakob Johann von Uexküll

Die Bedeutung der Funktionsregeln für den Funktionskreis

1.6 Biological sciences

1928

Hans Leisegang

Der Kreislauf der Dinge

6.3 Philosophy ethics and religion

1933

Ragnar Frisch

Economy as a closed system

5.2 Economics and business

1934

Jacob Levy Moreno

Balance and imbalance within social atom

5.3 Sociology

1935

Jan Tinbergen

Wirtschaftskreislauf

5.2 Economics and business

1940

Viktor von Weizsäcker

Die Genese der Form

3.5 Other medical sciences

1940

Jan Tinbergen

The econometric business cycle

5.2 Economics and business

1943

Warren McCulloch

The computing brain

5.1 Psychology

1948

Claude Elwood Shannon

A Mathematical Theory of Communication

1.1 Mathematics

1950

Claude Elwood Shannon

Estimating the entropy and redundancy of a language

1.1 Mathematics

1952

William Ross Ashby

Behavioral training

3.2 Clinical medicine

1952

William Ross Ashby

Polystable system be subjected to an impulsive stimulus

3.5 Other medical sciences

1952

William Ross Ashby

The brain as a machine

3.5 Other medical sciences

1952

W. Ross Ashby

Adaption As Stability

3.5 Other medical sciences

1952

Alan L. Hodgkin

The membrane current and its application to conduction and excitation in nerve

1.6 Biological sciences

1953

Irwin Bross

Role of the Model (Model Theory)

2.11 Other Engineering and Technologies

1953

William Grey Walter

The brain and the circuit

3.5 Other medical sciences

1955

Ned Chapin

Loop of control

1.2 Computer and information sciences

1957

Paul Alexander Baran

Indirect economic relations between advanced and underdeveloped countries

5.2 Economics and business

1957

David Easton

A Political System

5.6 Political Science

1959

Anthony Stafford Beer

Das Prinzip der Vervollständigung von außen (BLACK BOX)

5.1 Psychology

1961

Gordon Pask

Manipulating the behavior (is manipulating the evolution)

5.1 Psychology

1961

Gordon Pask

The survival of a self organizing system

5.3 Educational sciences

1961

Gordon Pask

Teaching machines

5.1 Psychologie

1962

Helmar Frank

Informationspsychologie

1.1 Mathematics

1962

Donald L. Bitzer

Teaching machine

2.2 Electrical engineering

1962

Johann Leo Weisgerber

Sprachwissenschaft

6.2 Languages and literature

1962

Rul Gunzenhäuser

Informationstheoretischen Modelle für ästhetische Prozesse

1.2 Computer and information sciences

1962

Andrew P. Sage

Electronic simulation of the biological clock

2.2 Electrical engineering

1963

Gilbert Simondon

Les sciences de l'homme

6.3 Philosophy ethics and religion

1963

Maruyama Magoroh

Mutual Causal Processes

2.11 Other Engineering and Technologies

1963

Karl W. Deutsch

Informationsströme und Steuerungsfunktionen im Prozeß der außenpolitischen Entscheidungsbildung

5.6 Political Science

1963

William N. McPhee

Voting model

5.3 Sociology

1963

Abraham Moles

La théorie de l'information et leur application aux langages

2.2 Electrical engineering

1964

Andrew Gordon Speedie Pask

Theater

6.4 Art (arts, history of arts, performing arts, music)

1964

Michael A. Arbib

(Logical) Models of Neural Networks

1.1 Mathematics

1964

Uno Kōzō

The circulation-process of capital

5.2 Economics and business

1965

Hywel Murrell

Man receiving and processing information

5.1 Psychology

1965

Motoyosi Sugita

The human being may be a kind of information processing apparatus

1.3 Physical sciences

1965

David Easton

A Political System Diagram

5.6 Political sciences

1965

David Easton

Demand Flow Patterns

5.6 Political sciences

1965

David Easton

The Systemic Feedback Loop

5.6 Political Science

1966

Gordon Pask

An ultrastable or an hierarchically organised and goal directed adaptive control mechanism

5.3 Educational sciences

1966

Karl Steinbuch

Informationsbank

1.3 Physical sciences

1966

Stafford Beer

Controlling Enterprises

5.1 Psychology | 6.3 Philosophy

1967

Walter Buckley

Social feedback system

5.3 Sociology

1967

Walter F. Buckley

Collective Behavior

5.3 Sociology

1967

John Cunningham Lilly

Effects of LSD on the Human Biocomputer

3.5 Other medical sciences

1967

Erich Jantsch

Techniques in perspective

1.5 Earth and related environmental sciences

1967

Heinz von Foerster

A schematic of the canon of perception and cognition

1.3 Physical sciences

1968

Stanley Young

The total system

5.2 Economics and business

1968

Helmar Frank

Grundlagen der „Lernmaschine“

1.1 Mathematics

1969

Nicolas Schöffer

Die kybernetische Stadt

6.4 Art (arts, history of arts, performing arts, music)

1970

Michael Conrad

Flow of control in evolution program

1.7 Other natural sciences

1970

Mihajlo D. Mesarović

Multilevel systems

2.2 Electrical engineering

1970

Hugh Douglas Price

Regional convergence in per capita income

5.6 Political Science

1970

Mihajlo D. Mesarović

Levels of abstraction: The stratified system

2.2 Electrical engineering

1971

Howard T. Odum

Replacement Value of Ecosystems

1.5 Earth and related environmental sciences

1971

Howard T. Odum

Group action and coordination

1.5 Earth and related environmental sciences

1971

Stephen David Bryen

Risk, awareness, consciousness and the human mechanism Response

5.6 Political Science

1971

Stephen David Bryen

Consciousness and risk in policy choice

5.6 Political Science

1971

Robert Alan Dahl

A pluralistic social order

5.6 Political Science

1972

Helmut Krauch

Zielgruppenkommunikation in der Direktdemokratie

5.3 Sociology

1972

Anthony Stafford Beer

The management of variety in the political context

w

1972

Alexander Yakovlevich Lerner

Control structure in an organised system

2.2 Electrical Engineering, electronic engineering, information engineering

1973

Claus Offe

Politische Krisentheorie

5.3 Sociology

1973

Anthony Stafford Beer

The Disregarded Tools of Modern Man

we

1973

Jürgen Habermas

Komplexität und Demokratie

6.3 Philosophy ethics and religion

1974

Heribert Meffert

Marketing und Produktion als lernfähige Subsysteme

5.2 Economics and business

1974

Heribert Meffert

Automatisierung betrieblicher Abläufe

5.2 Economics and business

1975

Alastaire M. Taylor

Metamodel

5.6 Political Science

1975

Edgar Frank Codd

Interactive support for non-programmers

1.1 Mathematics

1976

Abraham Moles

Der Kreislauf der Kultur

2.2 Electrical engineering

1976

George E. P. Box

Data analysis and data getting in the process of scientific investigation

1.1 Mathematics

1977

Irving L. Janis

The pattern of vigilance

5.1 Psychology

1977

John Wells Kingdon

A Voting model

5.6 Political Science

1977

Shigekoto Kaihara

The morbidity model

3.5 Other medical sciences

1977

Edgar Morin

Du cercle vicieux au cycle vertueux

5.3 Sociology

1978

Stroud Cornock

Systems and world views

6.4 Art (arts/history of arts/performing arts/music)

1978

J. Lynn England

Organism in an environment

5.3 Sociology

1978

Johann Millendorfer

Hard-observations of soft-variables

1.7 Other natural sciences

1978

Charles A. Laszlo

Health sciences

3.3 Health sciences

1978

Hartmut Bossel

Information processing and orientation of an actor system

1.5 Earth and related environmental sciences

1978

Hartmut Bossel

Information processing and orientation of an actor system

1.5 Earth and related environmental sciences

1978

José F. Silvio

The educational system and the environment

5.3 Educational Sciences

1978

John Stringer

Resources

2.11 Other Engineering and Technologies

1979

Nicolas Rescher

Selfcorrection

6.3 Philosophy ethics and religion

1979

Erik Christopher Zeeman

Catastrophe Theory

1.1 Mathematics

1979

Herman Kahn

A cyclical cultural change

1.3 Physical sciences

1979

Benjamin I. Page

A full non-recursive voting model

5.6 Political Science

1980

Karl W. Deutsch

Komplexitätsreduktion

5.6 Political Science

1980

James R. Averill

Theorie and model of emotion

5.1 Psychology

1981

Peter Checkland

Systems, classes and beyond (transcendental)

5.2 Economics and business

1982

Rodrigo Jokisch

Technologischer Wandel in Gesamtdarstellungen

5.3 Sociology

1982

Ernst Terhardt

About the impact of computers on music

6.4 Art (arts, history of arts, performing arts, music)

1985

Aloisius H. Louie

The natural system as a set of qualities

1.6 Biological sciences

1985

Robert J. Rosen

Encodings Between Natural and Formal Systems

1.6 Biological sciences

1993

Kenyon B. De Greene

Systems and Policymaking

5.7 Other social sciences

1994

Gerhard Roth

Ist der Wille frei?

6.3 Philosophy ethics and religion

2010

Niklas Luhmann

Analytisches Modell des politischen Systems

5.3 Sociology